Skip to main content
Log in

Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The decolorization and degradation of the synthetic aqueous solution of the Acid Orange 10 (AO10) dye on Ti/PbO2 anode were investigated using the response surface methodology based on central composite design with three variables: current density, pH, and supporting electrolyte concentration. The Ti/PbO2 electrode was prepared by the electrochemical deposition method. The optimum conditions for AO10 decolorization in synthetic dye solution were electrolyte concentration of 117.04 mM, pH of 12.05, and current density of 73.64 mA cm−2. The results indicated that the most effective factor for AO10 degradation was current density. Furthermore, the color removal efficiency significantly increased with increasing current density. To measure AO10 mineralization under optimum conditions, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were evaluated. Under these conditions, decolorization was completed and 63% removal was recorded for COD and 60% for TOC after 100 min of electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. dos Santos, F. J. Cervantes and J. B. van Lier, Bioresour. Technol., 98, 2369 (2007).

    Article  CAS  Google Scholar 

  2. S. Mondal, Environ. Eng. Sci., 25, 383 (2008).

    Article  CAS  Google Scholar 

  3. N. Jovic-Jovicic, A. Milutinovic-Nikolic, P. Bankovic, Z. Mojovic, M. Žunic, I. Gržetic and D. Jovanovic, Appl. Clay Sci., 47, 452 (2010).

    Article  CAS  Google Scholar 

  4. M. H. Entezari, Z. S. Al-Hoseini and N. Ashraf, Ultrason. Sonochem., 15, 433 (2008).

    Article  CAS  Google Scholar 

  5. S. Meriç, D. Kaptan and T. Ölmez, Chemosphere, 54, 435 (2004).

    Article  CAS  Google Scholar 

  6. R. Saratale, G. Saratale, J. Chang and S. Govindwar, J. Taiwan Inst. Chem. Eng., 42, 138 (2011).

    Article  CAS  Google Scholar 

  7. X. R. Xu and X. Z. Li, Sep. Purif. Technol., 72, 105 (2010).

    Article  CAS  Google Scholar 

  8. N. Benselka-Hadj Abdelkader, A. Bentouami, Z. Derriche, N. Bettahar and L. C. De Menorval, Chem. Eng. J., 169, 231 (2011).

    Article  CAS  Google Scholar 

  9. A. K. Giri, A. Mukherjee, G. Talukder and A. Sharma, Toxicol. Lett., 44, 253 (1988).

    Article  CAS  Google Scholar 

  10. S. P. Sun, C. J. Li, J. H. Sun, S. H. Shi, M. H. Fan and Q. Zhou, J. Hazard. Mater., 161, 1052 (2009).

    Article  CAS  Google Scholar 

  11. C. A. Martínez-Huitle and E. Brillas, Appl. Catal. B-Environ., 87, 105 (2009).

    Article  CAS  Google Scholar 

  12. S. Raghu and C. A. Basha, J. Hazard. Mater., 139, 381 (2007).

    Article  CAS  Google Scholar 

  13. J. D. Rodgers, W. Jedral and N. J. Bunce, Environ. Sci. Technol., 33, 1453 (1999).

    Article  CAS  Google Scholar 

  14. D. Rajkumar, B. J. Song and J. G. Kim, Dyes Pigm., 72, (2007).

  15. H. Xu, A. P. Li, Q. Qi, W. Jiang and Y. M. Sun, Korean J. Chem. Eng., 29, 1178 (2012).

    Article  CAS  Google Scholar 

  16. J. M. Aquino, G. F. Pereira, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, J. Hazard. Mater., 192, 1275 (2011).

    Article  CAS  Google Scholar 

  17. O. J. Murphy, G. Duncan Hitchens, L. Kaba and C. E. Verostko, Water Res., 26, 443 (1992).

    Article  CAS  Google Scholar 

  18. A. Vlyssides, M. Loizidou, P. Karlis, A. Zorpas and D. Papaioannou, J. Hazard. Mater., 70, 41 (1999).

    Article  CAS  Google Scholar 

  19. J. Wang, R. P. Deo, P. Poulin and M. Mangey, J. Am. Chem. Soc., 125, 14706 (2003).

    Article  CAS  Google Scholar 

  20. P. A. Carneiro, M. E. Osugi, C. I. S. Fugivara, N. Boralle, M. Furlan and M. V. B. Zanoni, Chemosphere, 59, 431 (2005).

    Article  CAS  Google Scholar 

  21. M. Sanroman, M. Pazos, M. Ricart and C. Cameselle, Chemosphere, 57, 233 (2004).

    Article  CAS  Google Scholar 

  22. Y. Xiong, P. J. Strunk, H. Xia, X. Zhu and H. T. Karlsson, Water Res., 35, 4226 (2001).

    Article  CAS  Google Scholar 

  23. V. Santos, A. Morão, M. J. Pacheco, L. Ciríaco and A. Lopes, J. Environ. Eng. Manage., 18, 193 (2008).

    CAS  Google Scholar 

  24. J. Cao, H. Zhao, F. Cao, J. Zhang and C. Cao, Electrochim. Acta, 54, 2595 (2009).

    Article  CAS  Google Scholar 

  25. C. Comninellis and G. Chen, Electrochemistry for the Environment, Springer (2010).

    Book  Google Scholar 

  26. M. Panizza and G. Cerisola, Chem. Rev., 109, 6541 (2009).

    Article  CAS  Google Scholar 

  27. E. M. Siedlecka, S. Stolte, M. Golebiowski, A. Nienstedt, P. Stepnowski and J. Thöming, Sep. Purif. Technol., 101, 26 (2012).

    Article  CAS  Google Scholar 

  28. K. Radha, V. Sridevi, K. Kalaivani and M. Raj, Desalin. Water Treat., 7, 6 (2009).

    Article  CAS  Google Scholar 

  29. L. S. Andrade, T. T. Tasso, D.L. da Silva, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, Electrochim. Acta, 54, 2024 (2009).

    Article  CAS  Google Scholar 

  30. D. C. Montgomery, Design and analysis of experiments, 7th Ed., John Wiley & Sons, New York (2009).

    Google Scholar 

  31. J. M. Aquino, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, J. Environ. Chem. Eng., 1, 954 (2013).

    Article  CAS  Google Scholar 

  32. A. Fernandes, A. Morao, M. Magrinho, A. Lopes and I. Gonçalves, Dyes Pigm., 61, 287 (2004).

    Article  CAS  Google Scholar 

  33. A. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 147 (1999).

    Article  CAS  Google Scholar 

  34. A. Del Río, M. Benimeli, J. Molina, J. Bonastre and F. Cases, Int. J. Electrochem. Sci., 7, 13074 (2012).

    Google Scholar 

  35. N. A. Ghalwa, M. Gaber, A. M. Khedr and M. F. Salem, Int. J. Electrochem. Sci., 7, 6044 (2012).

    Google Scholar 

  36. L. Xu, Z. Guo, L. Du and J. He, Electrochim. Acta, 97, 150 (2013).

    Article  CAS  Google Scholar 

  37. R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, Wiley (2009).

    Google Scholar 

  38. T. W. Anderson and D. A. Darling, J. Am. Stat. Assoc., 49, 765 (1954).

    Article  Google Scholar 

  39. T. S. Breusch and A. R. Pagan, Econometrica, 47, 1287 (1979).

    Article  Google Scholar 

  40. J. Durbin and G. S. Watson, Biometrika, 37, 409 (1950).

    CAS  Google Scholar 

  41. J. Durbin and G. S. Watson, Biometrika, 38, 159 (1951).

    Article  CAS  Google Scholar 

  42. B. Efron and G. Gong, Am. Stat., 37, 36 (1983).

    Google Scholar 

  43. M. H. Kutner, C. Nachtsheim and J. Neter, Applied linear regression models, McGraw-Hill/Irwin (2004).

    Google Scholar 

  44. C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou and M. Zhou, Chem. Eng. J., 228, 455 (2013).

    Article  CAS  Google Scholar 

  45. Q. Dai, H. Shen, Y. Xia, F. Chen, J. Wang and J. Chen, Sep. Purif. Technol., 104, 9 (2013).

    Article  CAS  Google Scholar 

  46. J. Niu, D. Maharana, J. Xu, Z. Chai and Y. Bao, J. Environ. Sci., 25, 1424 (2013).

    Article  CAS  Google Scholar 

  47. C. Zhong, K. Wei, W. Han, L. Wang, X. Sun and J. Li, J. Electroanal. Chem., 705, 68 (2013).

    Article  CAS  Google Scholar 

  48. M. Zhou and J. He, J. Hazard. Mater., 153, 357 (2008).

    Article  CAS  Google Scholar 

  49. N. Djafarzadeh, M. Safarpour and A. Khataee, Korean J. Chem. Eng., 31, 785 (2014).

    Article  CAS  Google Scholar 

  50. J. Niu, Y. Bao, Y. Li and Z. Chai, Chemosphere, 92, 1571 (2013).

    Article  CAS  Google Scholar 

  51. D. Shao, J. Liang, X. Cui, H. Xu and W. Yan, Chem. Eng. J., 244, 288 (2014).

    Article  CAS  Google Scholar 

  52. E. Alvarez-Guerra, A. Dominguez-Ramos and A. Irabien, Chem. Eng. Res. Des., 89, 2679 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonyadinejad, G., Sarafraz, M., Khosravi, M. et al. Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology. Korean J. Chem. Eng. 33, 189–196 (2016). https://doi.org/10.1007/s11814-015-0115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0115-x

Keywords

Navigation