Skip to main content
Log in

Solid-state synthesis of the phyllosilicate Effenbergerite (BaCuSi4O10) for electrochemical sensing of ciprofloxacin antibiotic in pharmaceutical drug formulation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Drug detection is crucial for monitoring the concentration of specific drugs in the human body or veterinary animals or the environment. In this study, the phyllosilicate Effenbergerite (BaCuSi4O10) was prepared by solid-state synthesis for electrochemical sensing of ciprofloxacin (CFX), one of the commonly used antibacterial drugs. Effenbergerite is naturally occurring and widely available and was used as a cost-effective material to fabricate a sensor for the rapid electrochemical detection and quantification of ciprofloxacin. The sensor was fabricated by modifying a glassy carbon electrode (GCE) with the synthesized Effenbergerite to obtain BaCuSi4O10/GCE. Powder X-ray diffraction (PXRD), Fourier-transform infra-red spectroscopy (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the Effenbergerite. Differential pulse voltammetry (DPV) showed that the optimum pH for the electrochemical detection of ciprofloxacin in phosphate buffer solution (PBS) electrolyte using the BaCuSi4O10/GCE sensor was pH 5.5. The linear range has been established to be 0.05–150 µM, and the limit of detection (LOD) was ca. 9 nM. The sensor was investigated in the presence of non-target interferents as well as in the presence of other drugs and was found to be selective toward ciprofloxacin. The pharmaceutical drug, Cifloc 500, analysis was done to establish the method’s reliability and a significantly low standard deviation of 1.74% was achieved. The results indicate that the sensor has application in detecting CFX in natural waters and wastewater effluents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data obtained have been provided for transparency.

References

  1. Rusch M, Spielmeyer A, Zorn H, Hamscher G (2019) Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol 103:6933–6948. https://doi.org/10.1007/s00253-019-10017-8

    Article  CAS  PubMed  Google Scholar 

  2. Campoli-Richards DM, Monk JP, Price A et al (1988) Ciprofloxacin. Drugs 35:373–447. https://doi.org/10.2165/00003495-198835040-00003

    Article  CAS  PubMed  Google Scholar 

  3. Farhangi M, Kobarfard F, Mahboubi A et al (2018) Preparation of an optimized ciprofloxacin-loaded chitosan nanomicelle with enhanced antibacterial activity. Drug Dev Ind Pharm 44:1273–1284. https://doi.org/10.1080/03639045.2018.1442847

    Article  CAS  PubMed  Google Scholar 

  4. Davis R, Markham A, Balfour JA (1996) Ciprofloxacin: An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs 51:1019–1074. https://doi.org/10.2165/00003495-199651060-00010

    Article  CAS  PubMed  Google Scholar 

  5. Phillips I, King A, Shannon K (2000) Comparative in-vitro properties of the Quinolones. In: Phillips I, King A, Shannon K (eds) The Quinolones. Elsevier, Amsterdam, pp 99–137

    Chapter  Google Scholar 

  6. Gulen B, Demircivi P (2020) Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2:1 dioctahedral clay structure: Box-Behnken experimental design. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127659

    Article  Google Scholar 

  7. Appelbaum PC, Hunter PA (2000) The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15. https://doi.org/10.1016/S0924-8579(00)00192-8

    Article  CAS  PubMed  Google Scholar 

  8. Jiang D (2018) 4-Quinolone derivatives and their activities against gram-negative pathogens. J Heterocycl Chem 55:2003–2018. https://doi.org/10.1002/jhet.3244

    Article  CAS  Google Scholar 

  9. Wolfson JS, Hooper DC (1985) The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother 28:581. https://doi.org/10.1128/aac.28.4.581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domagala JM (1994) Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706. https://doi.org/10.1093/jac/33.4.685

    Article  CAS  PubMed  Google Scholar 

  11. El-Kommos ME, Saleh GA, El-Gizawi SM, Abou-Elwafa MA (2003) Spectrofluorometric determination of certain quinolone antibacterials using metal chelation. Talanta 60:1033–1050. https://doi.org/10.1016/S0039-9140(03)00171-1

    Article  CAS  PubMed  Google Scholar 

  12. Brighty KE, Gootz TD (2000) Chemistry and mechanism of action of the Quinolone antibacterials. In: Andriole VT (ed) The Quinolones. Elsevier, San Diego, pp 33–97

    Chapter  Google Scholar 

  13. Reece RJ, Maxwell A (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26:335–375. https://doi.org/10.3109/10409239109114072

    Article  CAS  PubMed  Google Scholar 

  14. Blandeau JM (1999) Expanded activity and utility of the new fluoroquinolones: A review. Clin Ther 21:3–40. https://doi.org/10.1016/S0149-2918(00)88266-1

    Article  Google Scholar 

  15. Hooper DC, Jacoby GA (2016) Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320. https://doi.org/10.1101/cshperspect.a025320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitton-Fry MJ, Brickner SJ, Hamel JC et al (2017) Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 27:3353–3358. https://doi.org/10.1016/j.bmcl.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  17. Anderson VE, Osheroff N (2001) Type II topoisomerases as targets for quinolone antibacterials turning Dr. Jekyll into Mr. Hyde. Curr Pharm Des 7:337–353. https://doi.org/10.2174/1381612013398013

    Article  CAS  PubMed  Google Scholar 

  18. Menzel R, Gellert M (1994) The biochemistry and biology of DNA gyrase. Adv Pharmacol 29:39. https://doi.org/10.1016/s1054-3589(08)60539-6

    Article  Google Scholar 

  19. Belal F, Al-Majed AA, Al-Obaid AM (1999) Methods of analysis of 4-quinolone antibacterials. Talanta 50:765–786. https://doi.org/10.1016/S0039-9140(99)00139-3

    Article  CAS  PubMed  Google Scholar 

  20. Mitsuhashi S, Kojima T, Nakanishi N et al (1992) Fluorinated quinolones — new quinolone antimicrobials. Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques. Birkhäuser Basel, Basel, pp 9–147

    Chapter  Google Scholar 

  21. Neu HC (1994) Major advances in antibacterial Quinolone therapy. Adv Pharmacol. 29A:227–262

    Article  CAS  Google Scholar 

  22. Krumpe PE, Cohn S, Garreltes J et al (1999) Intravenous and oral mono-or combination-therapy in the treatment of severe infections: Ciprofloxacin versus standard antibiotic therapy. J Antimicrob Chemother 43:117–128. https://doi.org/10.1093/jac/43.suppl_1.117

    Article  CAS  PubMed  Google Scholar 

  23. Ball P, Fernald A, Tillotson G (1998) Therapeutic advances of new fluoroquinolones. Expert Opin Investig Drugs 7:761–783. https://doi.org/10.1517/13543784.7.5.761

    Article  CAS  PubMed  Google Scholar 

  24. Auquer F, Cordón F, Gorina E et al (2002) Single-dose ciprofloxacin versus 3 days of norfloxacin in uncomplicated urinary tract infections in women. Clin Microbiol Infect 8:50–54. https://doi.org/10.1046/j.1198-743x.2001.00279.x-i1

    Article  CAS  PubMed  Google Scholar 

  25. Richard GA, Mathew CP, Kirstein JM et al (2002) Single-dose fluoroquinolone therapy of acute uncomplicated urinary tract infection in women: results from a randomized, double-blind, multicenter trial comparing single-dose to 3-day fluoroquinolone regimens. Urology 59:334–339. https://doi.org/10.1016/S0090-4295(01)01562-X

    Article  PubMed  Google Scholar 

  26. Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51:1–11. https://doi.org/10.1093/jac/dkg212

    Article  CAS  Google Scholar 

  27. Andriole VT (2000) The Quinolones. In: Andriole VT (ed) The Quinolones. Elsevier, San Diego, pp 477–495

    Chapter  Google Scholar 

  28. Ball P (2000) Quinolone generations: natural history or natural selection? J Antimicrob Chemother 46:17–24. https://doi.org/10.1093/oxfordjournals.jac.a020889

    Article  CAS  PubMed  Google Scholar 

  29. Andriole VT (2000) The quinolones. Elsevier, Amsterdam

    Book  Google Scholar 

  30. Andriole CL, Andriole VT (2002) Are all quinolones created equal. Mediguide Infect Dis 21:1–5

    Article  Google Scholar 

  31. Gootz TD, Brighty KE (1996) Fluoroquinolone antibacterials: SAR, mechanism of action, resistance, and clinical aspects. Med Res Rev 16:433–486

    Article  CAS  Google Scholar 

  32. Danner M-C, Robertson A, Behrends V, Reiss J (2019) Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci Total Environ 664:. https://doi.org/10.1016/j.scitotenv.2019.01.406

    Article  PubMed  Google Scholar 

  33. Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01728

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. https://doi.org/10.1016/j.envint.2008.10.008

    Article  PubMed  Google Scholar 

  35. Berendsen BJA, Wegh RS, Memelink J et al (2015) The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta. https://doi.org/10.1016/j.talanta.2014.09.022

    Article  PubMed  Google Scholar 

  36. Gomes MP, Richardi VS, Bicalho EM et al (2019) Effects of ciprofloxacin and roundup on seed germination and root development of maize. Sci Total Environ 651:2671–2678. https://doi.org/10.1016/j.scitotenv.2018.09.365

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Li X, Wang X (2019) Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster. Chemosphere 237:124542. https://doi.org/10.1016/j.chemosphere.2019.124542

    Article  CAS  PubMed  Google Scholar 

  38. Archundia D, Duwig C, Lehembre F et al (2017) Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.10.129

    Article  PubMed  Google Scholar 

  39. Osińska A, Korzeniewska E, Harnisz M, Niestępski S (2017) The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.10.203

    Article  PubMed  Google Scholar 

  40. Banipal TS, Kaur R, Banipal PK (2018) Effect of sodium chloride on the interactions of ciprofloxacin hydrochloride with sodium dodecyl sulfate and hexadecyl trimethylammonium bromide: Conductometric and spectroscopic approach. J Mol Liq 255:113–121. https://doi.org/10.1016/j.molliq.2018.01.089

    Article  CAS  Google Scholar 

  41. Rahim MA, Mahbub S, Ahsan SMA et al (2021) Conductivity, cloud point and molecular dynamics investigations of the interaction of surfactants with ciprofloxacin hydrochloride drug: Effect of electrolytes. J Mol Liq 322:114683. https://doi.org/10.1016/j.molliq.2020.114683

    Article  CAS  Google Scholar 

  42. Obaydo RH, Alhaj Sakur A (2019) Spectrophotometric strategies for the analysis of binary combinations with minor component based on isoabsorptive point’s leveling effect: An application on ciprofloxacin and fluocinolone acetonide in their recently delivered co-formulation. Spectrochim Acta - Part A Mol Biomol Spectrosc 219:186–194. https://doi.org/10.1016/j.saa.2019.04.036

    Article  CAS  Google Scholar 

  43. Taghizade M, Ebrahimi M, Fooladi E, Yoosefian M (2021) Simultaneous spectrophotometric determination of the residual of ciprofloxacin, famotidine, and tramadol using magnetic solid phase extraction coupled with multivariate calibration methods. Microchem J 160:105627. https://doi.org/10.1016/j.microc.2020.105627

    Article  CAS  Google Scholar 

  44. Vakh C, Pochivalov A, Koronkiewicz S et al (2019) A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system. Food Chem 270:10–16. https://doi.org/10.1016/j.foodchem.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  45. Pavão e Pavão D, Nascimento Botelho C, Nunes Fernandes R et al (2020) A simple, cost-effective, and environmentally friendly method for determination of ciprofloxacin in drugs and urine samples based on electrogenerated chemiluminescence. Electroanalysis 32:1498–1506. https://doi.org/10.1002/elan.201900355

    Article  CAS  Google Scholar 

  46. Bosma R, Devasagayam J, Singh A, Collier CM (2020) Microchip capillary electrophoresis dairy device using fluorescence spectroscopy for detection of ciprofloxacin in milk samples. Sci Rep 10:13548. https://doi.org/10.1038/s41598-020-70566-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Turkie NS, Munshid HQ (2019) New approach for the determination of ciprofloxacin hydrochloride using fluorescence resonance energy transfer (FRET) and continuous flow injection analysis via ISNAG-fluorimeter. J Pharm Sci Res 11:1563–1570

    CAS  Google Scholar 

  48. Peixoto PS, Tóth IV, Barreiros L et al (2019) Screening of fluoroquinolones in environmental waters using disk-based solid-phase extraction combined to microplate fluorimetric determination and LC-MS/MS. Int J Environ Anal Chem 99:258–269. https://doi.org/10.1080/03067319.2019.1588969

    Article  CAS  Google Scholar 

  49. Yu L, Liu M, Wang T, Wang X (2019) Development and application of a lateral flow colloidal gold immunoassay strip for the rapid quantification of ciprofloxacin in animal muscle. Anal Methods 11:3244–3251. https://doi.org/10.1039/c9ay00657e

    Article  CAS  Google Scholar 

  50. Gezahegn T, Tegegne B, Zewge F, Chandravanshi BS (2019) Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector. BMC Chem. https://doi.org/10.1186/s13065-019-0543-5

    Article  PubMed  PubMed Central  Google Scholar 

  51. Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL (2020) Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec 20:682–692

    Article  CAS  Google Scholar 

  52. Burzo E (2007) Phyllosilicates. Springer, Berlin

    Google Scholar 

  53. Brown G (1984) Crystal structures of clay minerals and related phyllosilicates.  Philos Trans R Soc London Ser A Math Phys Sci 311:221–240. https://doi.org/10.1098/rsta.1984.0025

    Article  CAS  Google Scholar 

  54. Bailey SW, Brindley GW, Johns WD et al (1971) Summary of national and international recommendations on clay mineral nomenclature. Clays Clay Miner 19:129–132. https://doi.org/10.1346/CCMN.1971.0190210

    Article  Google Scholar 

  55. Tadanaga K, Morita K, Mori K, Tatsumisago M (2013) Synthesis of monodispersed silica nanoparticles with high concentration by theStöber process.  J Solgel Sci Technol 68:341–345. https://doi.org/10.1007/s10971-013-3175-6

    Article  CAS  Google Scholar 

  56. Johnson-McDaniel D, Salguero TT (2014) Exfoliation of Egyptian blue and Han blue, two alkali earth copper silicate-based pigments. J Vis Exp. https://doi.org/10.3791/51686

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zanello P, Nervi C, de Biani FF (2007) Inorganic electrochemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  58. Wang S, Peng T, Yang CF (2003) Electrochemical determination of interaction parameters for DNA and mitoxantrone in an irreversible redox process. Biophys Chem 104:239–248. https://doi.org/10.1016/S0301-4622(02)00371-X

    Article  CAS  PubMed  Google Scholar 

  59. Fotouhi L, Atoofi Z, Heravi MM (2013) Interaction of ciprofloxacin with DNA studied by spectroscopy and voltammetry at MWCNT/DNA modified glassy carbon electrode. Talanta 103:194–200. https://doi.org/10.1016/j.talanta.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  60. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  61. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New York

    Google Scholar 

  62. Pabst A (1959) Structures of some tetragonal sheet silicates. Acta Crystallogr 12:733–739

    Article  CAS  Google Scholar 

  63. Saksena BD (1961) Infra-red absorption studies of some silicate structures. Trans Faraday Soc 57:242–258. https://doi.org/10.1039/TF9615700242

    Article  CAS  Google Scholar 

  64. Wiedemann H-G, Berke H (2001) Chemical and physical investigations of Egyptian and Chinese blue and purple. Monum Sites 3:154–171. https://doi.org/10.11588/MONSTITES.2001.0.22351

    Article  Google Scholar 

  65. McMillan PF, Piriou B (1983) Raman spectroscopic studies of silicate and related glass structure: a review. Bull Mineral 106:57–75. https://doi.org/bulmi_0180-9210_1983_act_106_1_7668

    CAS  Google Scholar 

  66. Warowna-Grześkiewicz M, Chodkowski J, Fijałek Z (1995) Electrochemical studies of some quinolone antibiotics. Part I. Qualitative analysis on mercury and carbon electrodes. Acta Pol Pharm 52:187–192

    PubMed  Google Scholar 

  67. Zhang S, Wei S (2007) Electrochemical determination of ciprofloxacin based on the enhancement effect of sodium dodecyl benzene sulfonate. Bull Korean Chem Soc 28:543–546. https://doi.org/10.5012/bkcs.2007.28.4.543

    Article  CAS  Google Scholar 

  68. Uslu B, Bozal B, Kuscu ME (2010) Anodic voltammetry of ciprofloxacin and its analytical applications. Open Chem Biomed Methods J 3:108–114. https://doi.org/10.2174/18750389010030100108

    Article  CAS  Google Scholar 

  69. Osman NSE, Thapliyal N, Alwan WS et al (2015) Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin. J Mater Sci Mater Electron 26:5097–5105. https://doi.org/10.1007/s10854-015-3036-x

    Article  CAS  Google Scholar 

  70. Radi A, El-Sherif Z (2002) Determination of levofloxacin in human urine by adsorptive square-wave anodic stripping voltammetry on a glassy carbon electrode. Talanta 58:319–324. https://doi.org/10.1016/S0039-9140(02)00245-X

    Article  CAS  PubMed  Google Scholar 

  71. Girousi ST, Gherghi IC, Karava MK (2004) DNA-modified carbon paste electrode applied to the study of interaction between Rifampicin (RIF) and DNA in solution and at the electrode surface. J Pharm Biomed Anal 36:851–858. https://doi.org/10.1016/j.jpba.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  72. Berg H, Horn G, Luthardt U, Ihn W (1981) Interaction of anthracycline antibiotics with biopolymers. Part V. Polarographic behavior and complexes with DNA. J Electroanal Chem 128:537–553. https://doi.org/10.1016/S0022-0728(81)80246-X

    Article  Google Scholar 

  73. Anuar K, Tan WT, Atan MS et al (2007) Cyclic voltammetry study of copper tin sulfide compounds. Pacific J Sci Technol 8:252–260

    Google Scholar 

  74. Zhang F, Gu S, Ding Y et al (2013) A novel sensor based on electropolymerization of β-cyclodextrin and l-arginine on carbon paste electrode for determination of fluoroquinolones. Anal Chim Acta 770:53–61. https://doi.org/10.1016/j.aca.2013.01.052

    Article  CAS  PubMed  Google Scholar 

  75. Yuphintharakun N, Nurerk P, Chullasat K et al (2018) A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin. Spectrochim Acta Part A Mol Biomol Spectrosc 201:382–391. https://doi.org/10.1016/j.saa.2018.05.034

    Article  CAS  Google Scholar 

  76. Radičová M, Behúl M, Marton M et al (2017) Heavily boron doped diamond electrodes for ultra sensitive determination of ciprofloxacin in human urine. Electroanalysis 29:1612–1617. https://doi.org/10.1002/elan.201600769

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge research funds provided by the University of KwaZulu Natal and for the research supported in part by the National Research Foundation of South Africa (Grant Number: 132014), and the Eskom TESP program.

Author information

Authors and Affiliations

Authors

Contributions

GM: Conceptualization, methodology, experimental investigation, and writing original draft manuscript. VM: Conceptualization and draft manuscript editing. WEZ: Conceptualization, supervision, revised the manuscript, and research funding.

Corresponding author

Correspondence to Werner E. van Zyl.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the research work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Sensors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muungani, G., Moodley, V. & van Zyl, W.E. Solid-state synthesis of the phyllosilicate Effenbergerite (BaCuSi4O10) for electrochemical sensing of ciprofloxacin antibiotic in pharmaceutical drug formulation. J Appl Electrochem 52, 285–297 (2022). https://doi.org/10.1007/s10800-021-01633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01633-2

Keywords

Navigation