Skip to main content
Log in

Investigations of cathodic reactions using cyclic voltammetry and electrochemical behavior of Ti–Al–Zr alloy in nitric acid using electrochemical impedance spectroscopy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports electrochemical behavior of a titanium base alloy, Ti–Al–Zr, in aggressive nitric acid environments. The electrochemical behavior of the material was established in different nitric acid concentrations (1, 3, and 6 M) each in the absence/presence of oxidizing ions (Ce+4 and V+5) at two different temperatures, 25 °C and 75 °C. The study was done using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV experiments, done on a Pt electrode, established different cathodic reactions (and kinetics) in the nitric acid environment in the presence/absence of oxidizing ions. The EIS measurement established the stability of the passive film formed on the Ti–Al–Zr surface at different potentials. The degradation mechanism of the material in these aggressive nitric acid environments is discussed and presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code availability

Not applicable.

References

  1. Dey PK, Bansal NK (2006) Spent fuel reprocessing: a vital link in Indian nuclear power program. Nucl Eng Des 236:723–729

    Article  CAS  Google Scholar 

  2. Raj B, Mudali UK (2006) Materials development and corrosion problems in nuclear fuel reprocessing plants. Prog Nucl Energy 48:283–313

    Article  CAS  Google Scholar 

  3. Mudali UK, Dayal RK, Gnanamoorthy JB (1993) Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment. J Nucl Mater 203:73–82

    Article  CAS  Google Scholar 

  4. Ningshen S, Mudali UK, Amarendra G, Raj B (2009) Corrosion assessment of nitric acid grade austenitic stainless steels. Corros Sci 51:322–329

    Article  CAS  Google Scholar 

  5. Ningshen S, Mudali UK, Ramya S, Raj B (2011) Corrosion behavior of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros Sci 53:64–70

    Article  CAS  Google Scholar 

  6. Fauvet P, Balbaud F, Robin R, Tran QT, Mugnier A, Espinoux D (2008) Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J Nucl Mater 375:52–64

    Article  CAS  Google Scholar 

  7. Kain V, Shinde SS, Gadiyar HS (1994) Mechanism of improved corrosion resistance of type 304L stainless steel, nitric acid grade, in nitric acid environments. J Mater Eng Perform 3:699–705

    Article  CAS  Google Scholar 

  8. Bhise S, Kain V (2012) Methodology based on potential measurement for predicting corrosion behaviour of SS 304L in boiling nitric acid containing oxidizing ions. Corros Eng Sci Technol 47:61–69

    Article  CAS  Google Scholar 

  9. Ningshen S, Sakairi M, Suzuki M, Okuno T (2015) Corrosion performance and surface analysis of Ti–Ni–Pd–Ru–Cr alloy in nitric acid solution. Corros Sci 91:120–128

    Article  CAS  Google Scholar 

  10. Robin A, Sandim HRZ, Rosa JL (1999) Corrosion behavior of the Ti- 4% Al- 4% V alloy in boiling nitric acid solutions. Corros Sci 41:1333–1346

    Article  CAS  Google Scholar 

  11. Fossati A, Borgioli F, Galvanetto E, Bacci T (2004) Corrosion resistance properties of plasma nitride Ti–6Al–4V alloy in nitric acid solutions. Corros Sci 46:917–927

    Article  CAS  Google Scholar 

  12. Jayaraj J, Shankar AR, Mudali UK (2012) Electrochemical and passive characterization of a beta type Ti45Zr38Al17 cast rod in nitric acid medium. Electrochim Acta 85:210–219

    Article  CAS  Google Scholar 

  13. Robin A, Rosa JL, Sandim HRZ (2001) Corrosion behavior of Ti-4Al-4V alloy in nitric, phosphoric and sulfuric acid solutions at room temperature. J Appl Electrochem 31:455–460

    Article  CAS  Google Scholar 

  14. Sano Y, Takeuchi M, Nakajima Y, Hirano H, Uchiyama G, Nojima Y, Fujine S, Matsumoto S (2013) Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium–5% tantalum alloy in the hot nitric acid condensate. J Nucl Mater 432:475–481

    Article  CAS  Google Scholar 

  15. Shankar AR, Dayal RK, Balasubramaniam R, Raju VR, Mythili R, Saroja S, Vijayalakshmi M, Raghunathan VS (2008) Effect of heat treatment on the corrosion behavior of Ti–5Ta–1.8Nb alloy in boiling concentrated nitric acid. J Nucl Mater 372:277–284

    Article  Google Scholar 

  16. Kapoor K, Kain V, Gopalkrishna T, Sanyal T, De PK (2003) High corrosion resistant Ti–5%Ta–1.8%Nb alloy for fuel reprocessing application. J Nucl Mater 322:36–44

    Article  CAS  Google Scholar 

  17. Popa MV, Vasilescu E, Drob P, Vasilescu C, Rosca JM, Lopez AS (2005) Corrosion behavior of some titanium base alloys in acid solutions. Mater Manuf Processes 20:35–45

    Article  CAS  Google Scholar 

  18. Manivasagam G, Anbarasan V, Mudali UK, Raj B (2011) Corrosion-resistant Ti-xNb-xZr alloys for nitric acid applications in spent nuclear fuel reprocessing plants. Metall Mater Trans A 42A:685–2695

    Google Scholar 

  19. Razavi RS, Salehi M, Monirvaghefi M, Gordani GR (2018) Corrosion behavior of laser gas-nitrided Ti–6Al–4V alloy in nitric acid solution. J Mater Process Technol 203:315–320

    Article  Google Scholar 

  20. Sinha PK, Kain V (2020) Superior corrosion resistance of Ti-Al-Zr alloy in aggressive nitric acid environments. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-05300-z

    Article  CAS  Google Scholar 

  21. Dima GE, Vooys ACA, Koper MTM (2003) Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J Electroanal Chem 554–555:15–23

    Article  Google Scholar 

  22. Petrii OA, Safonova TY (1992) Electroreduction of nitrate and nitrite anions on platinum metals: a model process for elucidating the nature of the passivation by hydrogen adsorption. J Electroanal Chem 331:897–912

    Article  CAS  Google Scholar 

  23. Cunha MCPM, Weber IM, Nart FC (1996) On the adsorption and reduction of NO3- ions at Au and Pt electrodes studied by in situ FTIR spectroscopy. J Electroanal Chem 414:163–170

    Google Scholar 

  24. Horanyi G, Rizmayer EM (1982) Role of adsorption phenomena in the electrocatalytic reduction of nitric acid at a platinised platinum. J Electroanal Chem 140:347–366

    Article  CAS  Google Scholar 

  25. Balbaud F, Sanchez G, Santarini G, Picard G (2000) Cathodic reactions involved in corrosion processes occurring in concentrated nitric acid at 100 °C. Eur J Inorg Chem 2000:665–674

    Article  Google Scholar 

  26. Nishimura K, Machida K, Enyo M (1991) On-line mass spectroscopy applied to electroreduction of nitrite and nitrate ions at porous pt electrode in sulfuric acid solutions. Electrochim Acta 36:877–880

    Article  CAS  Google Scholar 

  27. Lange R, Maisonhaute E, Robin R, Vivier V (2013) On the kinetics of the nitrate reduction in concentrated nitric acid. Electrochem Commun 29:25–28

    Article  CAS  Google Scholar 

  28. Groot MT, Koper MTM (2004) The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J Electroanal Chem 562:81–94

    Article  Google Scholar 

  29. Mishra S, Lawrence F, Mallika C, Pandey NK, Srinivasan R, Mudali UK, Natarajan R (2015) Kinetics of reduction of nitric acid by electrochemical method and validation of cell design for plant application. Electrochim Acta 160:219–226

    Article  CAS  Google Scholar 

  30. Dutta D, Landolt D (1972) Electrochemical behavior of nitric oxide in 4M H2SO4 on platinum. J Electrochem Soc 119:1320–1325

    Article  CAS  Google Scholar 

  31. Vooys ACA (2004) Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochim Acta 49:1307–1314

    Article  Google Scholar 

  32. Sicsic D, Célérier FB, Tribollet B (2014) Mechanism of nitric acid reduction and kinetic modelling. Eur J Inorg Chem 36:6174–6184

    Article  Google Scholar 

  33. Gastelum MIS, Botte GG (2016) Electrochemical determination of the concentration of vanadium(iv) and vanadium(v) simultaneously. J Electrochem Soc 163:B696–B703

    Article  Google Scholar 

  34. Lvovich VF (2012) Impedance spectroscopy: application to electrochemical and dielectric phenomena. Wiley, New Jersey

    Book  Google Scholar 

  35. Hirschorna B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55:6218–6227

    Article  Google Scholar 

  36. Garcia JS, Climent V, Feliu JM (2009) Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (1 1 0) pole. Electrochem Commun 11:1515–1518

    Article  Google Scholar 

  37. Southampton Electrochemistry Group (1985) Instrumental methods in electrochemistry. Horwood, West sussex

    Google Scholar 

  38. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206

    Article  CAS  Google Scholar 

  39. Demars TJ, Bera MK, Seifert S, Antonio MR, Ellis RJ (2015) Revisiting the solution structure of ceric ammonium nitrate. Angew Chem 127:7644–7648

    Article  Google Scholar 

  40. Vijayabarthi T, Velayutham D, Noel M (2001) Influence of aromatic reactants and products involved in the two stage electro-chemical oxidation on the voltammetric behavior of Ce(IV)/Ce(III) redox couple. J Appl Electrochem 31:979–986

    Article  Google Scholar 

  41. Cui Z, Wang L, Zhong M, Ge F, Gao H, Man C, Liu C, Wang X (2018) Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates. J Electrochem Soc 165:C542–C561

    Article  CAS  Google Scholar 

  42. Fekry AM (2009) The influence of chloride and sulphate ions on the corrosion behavior of Ti and Ti-6Al-4V alloy in oxalic acid. Electrochim Acta 54:3480–3489

    Article  CAS  Google Scholar 

  43. Tang J, Shao Y, Guo J, Zhang T, Meng G, Wang F (2010) The effect of H2S concentration on the corrosion behaviour of carbon steel at 90 °C. Corros Sci 52:2050–2058

    Article  CAS  Google Scholar 

  44. Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) The influence of hydrogen sulphide on corrosion of iron under different conditions. Corros Sci 42:1669–1683

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafful Kumar Sinha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P.K., Kain, V. Investigations of cathodic reactions using cyclic voltammetry and electrochemical behavior of Ti–Al–Zr alloy in nitric acid using electrochemical impedance spectroscopy. J Appl Electrochem 52, 375–394 (2022). https://doi.org/10.1007/s10800-021-01628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01628-z

Keywords

Navigation