Skip to main content
Log in

Effect of deposition conditions on the properties of Ni–Mo–W coatings as electrocatalysts for hydrogen evolution reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ni–Mo–W electrocatalysts have been prepared by electrodeposition on a copper substrate in a bath with different Na2WO4·2H2O concentrations (0.01–0.1 M) and pH values (4 and 7.5). The chemical composition, surface morphology, and crystalline structure of the as-prepared electrocatalysts were followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) techniques. The chronopotentiometry and electrochemical impedance spectroscopy (EIS) methods were conjointly used to investigate the Ni–Mo–W electrocatalysts’ activity for hydrogen evolution reaction (HER) in alkaline medium. As estimated by EDX results, Ni is the major element in all the synthesized Ni–Mo–W deposits, and Mo and W contents are pH and Na2WO4·2H2O concentrations dependent. The XRD results reveal the formation of a nanocrystalline FCC-Ni(Mo, W) solid solution at pH 4, while at pH 7.5, the deposits present an amorphous structure. The deposits prepared at pH 4 have homogeneous surface with a needle-like morphology but at pH 7.5, a cracked morphology with a uniform and regular porous structure is observed. According to the electrochemical analyses, the Ni–Mo–W electrocatalyst developed at pH 7.5 and [WO42−] = 0.01 M with maximum Mo and minimum W contents was found to be the best electrode material for HER in alkaline media. This electrocatalyst exhibits low overpotential, η, and charge-transfer resistance, Rct, values associated to higher values for the double-layer capacitance, Cdl, and the roughness factor, Rf.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lasia A (2010) Hydrogen evolution reaction. In: Vielstich W, Gasteiger HA, Lamm A, Yokokawa H (eds) Handbook of fuel cells—fundamentals, technology and applications. Wiley, Hoboken

    Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  3. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev 81(2):1690–1704

    Article  CAS  Google Scholar 

  4. Hu C, Zhang L, Gong J (2019) Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting: review. Energy Environ Sci 12:2620–2645

    Article  CAS  Google Scholar 

  5. Chao T, Hu Y, Hong X, Li Y (2019) Design noble metal electrocatalysts on an atomic level. ChemElectroChem 6(2):289–303

    Article  CAS  Google Scholar 

  6. Marković N, Schmidt T, Stamenković V, Ross P (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116

    Article  Google Scholar 

  7. Chen Z, Savateev A, Pronkin S, Papaefthimiou V, Wolff C, Willinger MG, Willinger E, Neher D, Antonietti M, Dontsova D (2017) “The Easier the Better” preparation of efficient photocatalysts—metastable poly(heptazineimide) salts. Adv Mater 29(32):1700555

    Article  Google Scholar 

  8. Kundu A, Sahu JN, Redzwan G, Hashim MA (2013) An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrogen Energy 38(4):1745–1757

    Article  CAS  Google Scholar 

  9. Navarro-Flores E, Chong Z, Omanovic S (2005) Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A 226:179–197

    Article  CAS  Google Scholar 

  10. Sürme Y, Gürten AA, Kayaklrllmaz K (2013) Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution. Met Mater Int 19(4):803–812

    Article  Google Scholar 

  11. Popczyk M, Kubisztal J, Swinarew AS, Waskiewicz Z, Stanula A, Knechtle B (2020) Corrosion resistance of heat-treated Ni–W alloy coatings. Materials 13:1172

    Article  CAS  PubMed Central  Google Scholar 

  12. Yu X, Wang M, Wang Z, Gong X, Guo Z (2017) Time-dependent surface structure evolution of NiMo films electrodeposited under super gravity field as electrocatalyst for hydrogen evolution reaction. J Phys Chem C 121(31):16792–16802

    Article  CAS  Google Scholar 

  13. Salarvand V, Saghaf M, Noghani MT (2019) Hydrogen evolution activity of NiMo–MoO2 produced by mechanical milling. J Ultrafine Grained Nanostruct Mater 52(2):164–174

    CAS  Google Scholar 

  14. Oshchepkov AG, Bonnefont A, Pronkin SN, Cherstiouk OV, Ulhaq-Bouillet C, Papaefthimiou V, Parmon VN, Savinova ER (2018) Nanostructured nickel nanoparticles supported on vulcan carbon as a highly active catalyst for the hydrogen oxidation reaction in alkaline media. J Power Sources 402:447–452

    Article  CAS  Google Scholar 

  15. Metikoš-Huković M, Grubac Z, Radic N, Tonejc A (2006) Sputter deposited nanocrystalline Ni and Ni–W films as catalysts for hydrogen evolution. Mol Catal 249(1):172–180

    Article  Google Scholar 

  16. Indyka P, Lehman EB, Tarkowski L, Bigos A, Garcia-Lecina E (2014) Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition. J Alloys Compd 590:75–79

    Article  CAS  Google Scholar 

  17. Sun S, Bairachna T, Podlaha EJ (2013) Induced codeposition behavior of electrodeposited NiMoW alloys. J Electrochem Soc 160(10):D434–D440

    Article  CAS  Google Scholar 

  18. Safizadeh F, Ghali E, Houlachi G (2015) Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int J Hydrogen Energy 40:256–274

    Article  CAS  Google Scholar 

  19. Jesmani SM, Mohammadian-Semnani H, Abdollah-Pour H, Amini R (2019) The effect of pH on electrocatalytic properties of electrodeposited Ni–Mo/Ni coating using 1-ethyl-3-methylimidazolium bromide. Mater Res Express 6:1065e2

    Article  Google Scholar 

  20. Cesiulis H, Podlaha-Murphy EJ (2003) Electrolyte considerations of electrodeposited Ni–W alloys for microdevice fabrication. Mater Sci 9:329–333

    Google Scholar 

  21. Tasić GS, Lačnjevac U, Tasić MM, Kaninski MM, Nikolić VM, Žugić DL, Jović VL (2013) Influence of electrodeposition parameters of Ni–W on Ni cathode for alkaline water electrolyser. Int J Hydrogen Energy 38:4291–4297

    Article  Google Scholar 

  22. Abuin G, Coppola R, Diaz L (2019) Ni–Mo alloy electrodeposited over Ni substrate for HER on water electrolysis. Electrocatalysis 10:17–28

    Article  CAS  Google Scholar 

  23. Yari S, Dehghanian C (2013) Deposition and characterization of nanocrystalline and amorphous Ni–W coatings with embedded alumina nanoparticles. Ceram Int 39(7):7759–7766

    Article  CAS  Google Scholar 

  24. Younes O, Zhu L, Rosenberg Y, Shacham-Diamand Y, Gileadi E (2001) Electroplating of amorphous thin films of tungsten/nickel alloys. Langmuir 17:8270–8275

    Article  CAS  Google Scholar 

  25. Mech K, Zabinski P, Mucha M, Kowalik R (2013) Electrodeposition of catalytically active Ni–Mo alloys. Arch Metall Mater 58(1):227–229

    Article  CAS  Google Scholar 

  26. Kubisztala J, Budniok A, Lasia A (2007) Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. Int J Hydrogen Energy 32:1211–1218

    Article  Google Scholar 

  27. Protsenko VS, Danilov FI (2020) Current trends in electrodeposition of electrocatalytic coatings. Springer Nature, Cham, pp 263–293

    Google Scholar 

  28. Gómez MJ, Diaz LA, Franceschini EA, Lacconi GI, Abuin GC (2019) 3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications. J Appl Electrochem 49:1227–1238

    Article  Google Scholar 

  29. Záchenská J, Ábel M, Mičušík M, Jorík V, Zemanová M (2020) Nickel-based nanocoatings on 3D Ni foam for zero-gap alkaline water electrolysis. J Appl Electrochem 50:959–971

    Article  Google Scholar 

  30. Juškenas R, Valsiūnas I, Pakštas V, Selskis A, Jasulaitiene V, Karpavičiene V, Kapočius V (2006) XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni–W alloy. Appl Surf Sci 253:1435–1442

    Article  Google Scholar 

  31. Jinping F, Shuang C, Jianshe C, Kuiren L, Qing H (2015) Electrochemical properties of pulse plating amorphous Ni–Mo–W alloy coating in alkaline medium. Rare Met Mater Eng 44(3):538–543

    Article  Google Scholar 

  32. Allam M, Benaicha M, Dakhouche A (2018) Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 43(68):3394–3405

    Article  CAS  Google Scholar 

  33. Laszczyńska A, Tylus W, Szczygieł I (2021) Electrocatalytic properties for the hydrogen evolution of the electrodeposited NieMo/WC composites. Int J Hydrogen Energy 46:22813–22831

    Article  Google Scholar 

  34. Boubatra M, Azizi A, Schmerber G, Dinia A (2012) The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics 18:425–432

    Article  CAS  Google Scholar 

  35. Szczygiel B, Laszczynska A (2014) Influence of bath concentration and pH on electrodeposition process of ternary Zn–Ni–Mo alloy coatings. Trans IMF 92(4):196–202

    Article  CAS  Google Scholar 

  36. Zhang G, Xu B, Chong H, Wei W, Wang C, Wang G (2019) Effect of glyphosate on X-ray diffraction of copper films prepared by electrochemical deposition. RSC Adv 9:14016

    Article  CAS  Google Scholar 

  37. Wasekar NP, Haridoss P, Seshadri SK, Sundararajan G (2016) Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surf Coat Technol 291:130–140

    Article  CAS  Google Scholar 

  38. Lai L, Li H, Sun Y, Ding G, Wang H, Yang Z (2019) Investigation of electrodeposition external conditions on morphology and texture of Ni/SiCW composite coatings. Appl Sci 9:3824

    Article  CAS  Google Scholar 

  39. Sohrabi A, Dolati A, Ghorbani M, Barati MR, Stroeve P (2012) Elucidation of the structural texture of electrodeposited Ni/SiC nanocomposite coatings. J Phys Chem C 116:4105–4118

    Article  CAS  Google Scholar 

  40. Nielsen CB, Leisner P, Horsewell A (1998) On texture formation of chromium electrodeposits. J Appl Electrochem 28:141–150

    Article  Google Scholar 

  41. Li DY, Szpunar JA (1993) A texture formation mechanism during electrodeposition. J Mater Sci 28:5554–5559

    Article  CAS  Google Scholar 

  42. Nayana KO, Venkatesha TV (2011) Synergistic effects of additives on morphology, texture and discharge mechanism of zinc during electrodeposition. J Electroanal Chem 663:98–107

    Article  CAS  Google Scholar 

  43. Karolus M, Łagiewka E (2004) Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement. J Alloys Compd 367:235–238

    Article  CAS  Google Scholar 

  44. Moumeni H, Alleg S, Grenèche JM (2006) Formation of ball-milled Fe–Mo nanostructured powders. J Alloys Compd 419(1):140–144

    Article  CAS  Google Scholar 

  45. Moumeni H, Nemamcha A, Alleg S, Grenèche JM (2013) Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders. Mater Chem Phys 138:209–214

    Article  CAS  Google Scholar 

  46. Lee S, Choi M, Park S, Jung H, Yoo B (2015) Mechanical properties of electrodeposited Ni–W thin films with alternate W-rich and W-poor multilayers. Electrochim Acta 15:3225–3231

    Google Scholar 

  47. Bouzit FZ, Nemamcha A, Moumeni H, Rehspringer JL (2017) Morphology and Rietveld analysis of nanostructured Co–Ni electrodeposited thin films obtained at different current densities. Surf Coat Technol 315:172–180

    Article  CAS  Google Scholar 

  48. Moumeni H, Nemamcha A, Alleg S, Grenèche JM (2010) Stacking faults and structure analysis of ball-milled Fe–50%Co powders. Mater Chem Phys 122:439–443

    Article  CAS  Google Scholar 

  49. Beltowska-Lehman E, Indyka P (2012) Kinetics of Ni–Mo electrodeposition from Ni-rich citrate baths. Thin Solid Films 520:2046–2051

    Article  CAS  Google Scholar 

  50. Péter L, Fekete É, Kapoor G, Gubicza J (2021) Influence of the preparation conditions on the microstructure of electrodeposited nanocrystalline Ni–Mo alloys. Electrochim Acta 382:138352

    Article  Google Scholar 

  51. Mosayebi S, Rezaei M, Mahidashti Z (2020) Comparing corrosion behavior of Ni and Ni–Mo electroplated coatings in chloride mediums. Colloids Surf A 594:124654

    Article  CAS  Google Scholar 

  52. Sakita AMP, Passamani EC, Kumarc H, Cornejo DR, Fugivara CS, Noce RD, Benedetti AV (2013) Influence of current density on crystalline structure and magnetic properties of electrodeposited Co-rich CoNiW alloys. Mater Chem Phys 141:576–581

    Article  CAS  Google Scholar 

  53. Niedbała J (2009) Electroevolution of hydrogen on the polytiophene-modified Ni–Mo composite layers. Mater Chem Phys 118:46–50

    Article  Google Scholar 

  54. Dolgikh OV, Kravtsova YuG, Sotskaya NV (2010) The effect of composition of electrodeposited Ni–P alloys on the hydrogen evolution rate. Russ J Electrochem 46:918–924

    Article  CAS  Google Scholar 

  55. AbdelHamid Z, Hassan HB (2012) Influence of electrodeposition parameters on the characteristics of NiMoP film. Surf Coat Technol 212:37–45

    Article  CAS  Google Scholar 

  56. Pierozynski B (2011) On the hydrogen evolution reaction at nickel-coated carbon fibre in 30 wt% KOH solution. Int J Electrochem Sci 6:63–77

    CAS  Google Scholar 

  57. Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. Acs Catal 2:1916–1923

    Article  CAS  Google Scholar 

  58. Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao FF (2012) Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chem Soc Rev 41:8140–8162

    Article  CAS  PubMed  Google Scholar 

  59. Elias L, Hegde AC (2018) A comparative study on the electrocatalytic activity of electrodeposited Ni–W and Ni–P alloy coatings. Mater Today 5:21156–21161

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayet Moumeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjehem, H., Moumeni, H., Nemamcha, A. et al. Effect of deposition conditions on the properties of Ni–Mo–W coatings as electrocatalysts for hydrogen evolution reaction. J Appl Electrochem 52, 217–229 (2022). https://doi.org/10.1007/s10800-021-01615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01615-4

Keywords

Navigation