Skip to main content

Advertisement

Log in

Theoretical analysis of transient solution phase concentration field in a porous composite electrode with time-dependent flux boundary condition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Energy conversion and storage in a Li-ion cell involves multiple closely coupled transport processes, such as species diffusion through solid and solution phases in the electrode. Mathematical modeling of these processes is critical for fully understanding and optimizing the performance of a Li-ion cell. While a number of analytical and numerical models have been presented for solution phase diffusion, most of such work is based on the assumption of a constant current density. This paper presents analytical modeling of solution phase diffusion in a separate–electrode composite for a generalized, time-dependent current density. An analytical solution for the concentration field in a separator–electrode composite in such conditions is derived using the method of eigenfunction expansion. Good agreement with past work as well as numerical simulations is shown. Results for linear, periodic and step-function boundary conditions are discussed. The theoretical analysis presented here may help accurately model realistic processes where the applied current changes over time, for example, cyclic charge and discharge in an electric vehicle, or sudden changes in the battery load. Results presented here contribute towards the fundamental understanding of solution phase diffusion in Li-ion cells, and provide a basis for improving electrochemical energy conversion and storage processes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c :

Concentration (mol m3)

C :

Non-dimensional concentration, \(C=\frac{c}{{c}_{0}}\)

c 0 :

Initial concentration (mol m3)

D :

Diffusivity (m2 s1)

F :

Faraday constant (C mol1)

I :

Current density (A/m2)

J :

Non-dimensional generation/consumption term, \(J=-\frac{I(1-{t}^{+}){L}_{1}^{2}}{FD{L}_{2}{c}_{0}\varepsilon }\)

L :

Layer thickness (m)

r :

Ratio of electrode and separator thicknesses, \(r=\frac{{L}_{2}}{{L}_{1}}\)

t + :

Transference number (s)

t :

Time (s)

x :

Spatial coordinate (m)

ε :

Porosity

λ :

Eigenvalue

τ :

Non-dimensional time, \(\tau =\frac{Dt}{{L}_{1}^{2}}\)

ξ :

Non-dimensional spatial coordinate, \(\xi =\frac{x}{{L}_{1}}\)

1 :

Separator

2 :

Electrode

References

  1. Goodenough JB, Park K-S (2013) J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  3. Parhizi M, Ahmed M, Jain A (2017) J Power Sources 370:27–35

    Article  CAS  Google Scholar 

  4. Pasquier AD, Plitz I, Menocal S, Amatucci G (2003) J Power Sources 115:171–178

    Article  CAS  Google Scholar 

  5. Shah K et al (2017) J Electrochem Energy Convers Storage 14:020801

    Article  CAS  Google Scholar 

  6. Gomadam PM, Weidner JW, Dougal RA, White RE (2002) J Power Sources 110:267–284

    Article  CAS  Google Scholar 

  7. Xiong R, Cao J, Yu Q, He H, Sun F (2018) IEEE Access 6:1832–1843

    Article  Google Scholar 

  8. Xiao M, Choe S-Y (2012) J Power Sources 218:357–367

    Article  CAS  Google Scholar 

  9. Nejad S, Gladwin D, Stone D (2016) J Power Sources 316:183–196

    Article  CAS  Google Scholar 

  10. Zhang J, Lee J (2011) J Power Sources 196:6007–6014

    Article  CAS  Google Scholar 

  11. Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) J Power Sources 327:44–55

    Article  CAS  Google Scholar 

  12. Jardine AK, Lin D, Banjevic D (2006) Mech Syst Signal Process 20:1483–1510

    Article  Google Scholar 

  13. He H, Xiong R, Fan J (2011) Energies 4:582–598

    Article  Google Scholar 

  14. He H, Zhang X, Xiong R, Xu Y, Guo H (2012) Energy 39:310–318

    Article  Google Scholar 

  15. Santhanagopalan S, Guo Q, Ramadass P, White RE (2006) J Power Sources 156:620–628

    Article  CAS  Google Scholar 

  16. Subramanian VR, Diwakar VD, Tapriyal D (2005) J Electrochem Soc 152:1–8

    Article  CAS  Google Scholar 

  17. Newman J, Tiedemann W (1975) AIChE J 21:25–41

    Article  CAS  Google Scholar 

  18. Doyle M, Fuller TF, Newman J (1993) J Electrochem Soc 140:1526–1533

    Article  CAS  Google Scholar 

  19. Ramadesigan V et al (2012) J Electrochem Soc 159:31–45

    Article  CAS  Google Scholar 

  20. Botte GG, Subramanian VR, White RE (2000) Electrochim Acta 45:2595–2609

    Article  CAS  Google Scholar 

  21. Zhang Q, White RE (2007) J Power Sources 165:880–886

    Article  CAS  Google Scholar 

  22. Subramanian VR, Ritter JA, White RE (2001) J Electrochem Soc 148:444–449

    Article  Google Scholar 

  23. Cai L, White RE (2009) J Electrochem Soc 156:A154–A161

    Article  CAS  Google Scholar 

  24. Luo W, Lyu C, Wang L, Zhang L (2013) J Power Sources 241:295–310

    Article  CAS  Google Scholar 

  25. Fuller TF, Doyle M, Newman J (1994) J Electrochem Soc 141:1–10

    Article  CAS  Google Scholar 

  26. Subramanian VR, Tapriyal D, White RE (2004) Electrochem Solid-State Lett 7:A259–A263

    Article  CAS  Google Scholar 

  27. Ramadesigan V, Boovaragavan V, Pirkle JC, Subramanian VR (2010) J Electrochem Soc 157:A854–A867

    Article  CAS  Google Scholar 

  28. Subramanian VR, Boovaragavan V, Ramadesigan V, Arabandi M (2009) J Electrochem Soc 156:A260–A271

    Article  CAS  Google Scholar 

  29. Northrop PWC, Ramadesigan V, De S, Subramanian VR (2011) J Electrochem Soc 158:A1461–A1477

    Article  CAS  Google Scholar 

  30. Ning G, Popov BN (2004) J Electrochem Soc 151:A1584–A1591

    Article  CAS  Google Scholar 

  31. Rahimian SK, Rayman S, White RE (2013) J Power Sources 224:180–194

    Article  CAS  Google Scholar 

  32. Doyle M, Newman J (1997) J Appl Electrochem 27:846–856

    Article  CAS  Google Scholar 

  33. Subramanian VR, White RE (2001) J Power Sources 96:385–395

    Article  CAS  Google Scholar 

  34. Atlung S (1979) J Electrochem Soc 126:1311–1321

    Article  CAS  Google Scholar 

  35. Ali SH, Hussin A, Arof A (2002) J Power Sources 112:435–442

    Article  Google Scholar 

  36. Johan MR, Arof AK (2004) Ionics 10:405–414

    Article  CAS  Google Scholar 

  37. Liu S (2006) Solid State Ionics 177:53–58

    Article  CAS  Google Scholar 

  38. Johan MR, Arof AK (2007) J Power Sources 170:490–494

    Article  CAS  Google Scholar 

  39. Parhizi M, Jain A (2020) J Electrochem Soc 167:120544

    Article  CAS  Google Scholar 

  40. Guo M, White RE (2012) J Power Sources 198:322–328

    Article  CAS  Google Scholar 

  41. Verma S, Khosla A, Arya S (2020) J Electrochem Soc 167:120527

    Article  CAS  Google Scholar 

  42. Newman J, Thomas-Alyea KE (2004) Electrochemical systems. Wiley, Hoboken

    Google Scholar 

  43. Wu X, Shi J-Y, Lei H, Li Y-P, Okine L (2019) J Central South Univ 26:3175–3187

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by CAREER Award No. CBET-1554183 from the National Science Foundation. This research was also supported by the Key Project of Science of the Education Bureau of Henan Province (Grant No. 19B460005), Special Project of Basic Scientific Research Operating Expenses of Henan Polytechnic University (Grant No. NSFRF180427), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Dimensional equations and non-dimensionalization scheme

Appendix A: Dimensional equations and non-dimensionalization scheme

Based on the assumptions listed in Sect. 2, the concentration conservation equations for separator and electrode layers may be written in dimensional form as follows:

$$ \frac{{\partial c_{1} }}{\partial t} = D\frac{{\partial^{2} c_{1} }}{{\partial x^{2} }} $$
(37)

and

$$ \varepsilon \frac{{\partial c_{2} }}{\partial t} = D\varepsilon^{3/2} \frac{{\partial^{2} c_{2} }}{{\partial x^{2} }} - \frac{{I\left( t \right)\left( {1 - t_{ + } } \right)}}{{F \cdot L_{2} }} $$
(38)

Note that the migration term is zero based on the common assumption of constant transference number [42]. The term \( - \frac{{I\left( t \right)\left( {1 - t_{ + } } \right)}}{{F \cdot L_{c} }} \) appearing in Eq. (38) represents the pore wall flux, assumed to be uniform and constant [42]. The dimensional boundary conditions are

$$ \frac{{\partial c_{1} }}{\partial x} = - \frac{{I\left( t \right)\left( {1 - t_{ + } } \right)}}{F \cdot D}\quad {\text{at}}\,x = 0 $$
(39)
$$ c_{1} = c_{2} \quad {\text{at}}\,x = L_{1} $$
(40)
$$ \frac{{\partial c_{1} }}{\partial x} = \varepsilon^{3/2} \frac{{\partial c_{2} }}{\partial x}\quad {\text{at}}\,x = L_{1} $$
(41)
$$ \frac{{\partial c_{2} }}{\partial x} = 0\quad {\text{at}}\,x = L_{1} + L_{2} $$
(42)

The initial condition is

$$ c_{1} = c_{2} = c_{0} \quad {\text{at}}\,t = 0 $$
(43)

The non-dimensional variables are defined as follows

$$ \tau = \frac{Dt}{{L_{1}^{2} }};\quad \xi = \frac{x}{{L_{1} }};\quad C_{1} = \frac{{c_{1} }}{{c_{0} }};\quad C_{2} = \frac{{c_{2} }}{{c_{0} }} $$
(44)

Substituting in Eqs. (37)–(38), one may obtain the following non-dimensional governing equations:

$$ \frac{{\partial C_{1} }}{\partial \tau } = \frac{{\partial^{2} C_{1} }}{{\partial \xi^{2} }} $$
(45)
$$ \frac{{\partial C_{2} }}{\partial \tau } = \sqrt \varepsilon \frac{{\partial^{2} C_{2} }}{{\partial \xi^{2} }} + J\left( \tau \right) $$
(46)

where

$$ J\left( \tau \right) = - I\left( \tau \right)\frac{{\left( {1 - t_{ + } } \right)L_{1}^{2} }}{{FDL_{2} c_{0} \varepsilon }} $$
(47)

Similarly, substituting in the boundary conditions, given by Eqs. (39)–(42), one may obtain

$$ \frac{{\partial C_{1} }}{\partial \xi } = \varepsilon rJ\quad {\text{at}}\,\xi = 0 $$
(48)
$$ C_{1} = C_{2} \quad {\text{at}}\,\xi = 1 $$
(49)
$$ \frac{{\partial C_{1} }}{\partial \xi } = \varepsilon^{3/2} \frac{{\partial C_{2} }}{\partial \xi }\quad {\text{at}}\,\xi = 0 $$
(50)
$$ \frac{{\partial C_{2} }}{\partial \xi } = 0\quad {\text{at}}\,\xi = 1 + r $$
(51)

where r = L2/L1. The initial condition in non-dimensional form is

$$ C_{1} = C_{2} = 1\quad {\text{at}}\,\tau = 0 $$
(52)

Equations (45)–(52) constitute the set of non-dimensional equations solved in this work (Eqs. (1)–(4)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Parhizi, M. & Jain, A. Theoretical analysis of transient solution phase concentration field in a porous composite electrode with time-dependent flux boundary condition. J Appl Electrochem 51, 1241–1252 (2021). https://doi.org/10.1007/s10800-021-01573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01573-x

Keywords

Navigation