Skip to main content

Advertisement

Log in

A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Average discharge voltage of the P-type-layered oxides cathode materials is one of the key factors that determine the sodium-ion batteries (SIBs) performance, especially for the high energy density performance. Inspired by the strategy of lithium and magnesium doping in the transition metal layer to promote the anionic oxygen redox and the synergistic effect of composite materials for SIBs, we develop a layered P2/P3-Na0.75Li0.2Mg0.05Al0.05Mn0.7O2 composite cathode material enabled by the anionic oxygen redox. The synthesized composite delivers a reversible capacity of 180 mAh g−1 between 2.0 and 4.5 V at 0.2 C and keep ≈ 3.1 V stable average voltage above 2.5 V the discharge cutoff voltage. With a combination of the electrochemical performance, hard and soft X-ray absorption spectroscopy, we demonstrate that the irreversible anionic oxygen activity in the high-voltage region results in the capacity fading and the irreversible cationic manganese activity in the low-voltage region is responsible for the voltage decay. These findings provide a simple and effective method for designing low-voltage decay and high-energy density Na-deficient layered oxide composite.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:18013

    Article  Google Scholar 

  2. Jiang K, Xu S, Guo S, Zhang X, Zhang X, Qiao Y, Fang T, Wang P, He P, Zhou H (2018) A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life. Nano Energy 52:88–94

    Article  CAS  Google Scholar 

  3. Wang P-F, Xiao Y, Piao N, Wang Q-C, Ji X, Jin T, Guo Y-J, Liu S, Deng T, Cui C, Chen L, Guo Y-G, Yang X-Q, Wang C (2020) Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy 69:104474

    Article  CAS  Google Scholar 

  4. Li W-J, Han C, Wang W, Gebert F, Chou S-L, Liu H-K, Zhang X, Dou S-X (2017) Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. Adv Energy Mater 7:1700274

    Article  Google Scholar 

  5. Dai Z, Mani U, Tan HT, Yan Q (2017) Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1:1700098

  6. Gao H, Seymour ID, Xin S, Xue L, Henkelman G, Goodenough JB (2018) Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries. J Am Chem Soc 140:18192–18199

    Article  CAS  Google Scholar 

  7. Yang D, Xu J, Liao X-Z, He, He Y-S, Liu H, Ma Z-F (2014) Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries. Chem Commun 50:13377–13380

    Article  CAS  Google Scholar 

  8. Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2-Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714

    Article  CAS  Google Scholar 

  9. Hou P, Yin J, Lu X, Li J, Zhao Y, Xu X (2018) A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries. Nanoscale 10:6671–6677

    Article  CAS  Google Scholar 

  10. Hasa I, Buchholz D, Passerini S, Hassoun J (2015) A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. ACS Appl Mater Interfaces 7:5206–5612

    Article  CAS  Google Scholar 

  11. Konarova A, Jo JH, Choi JU, Bakenov Z, Yashiro H, Kim J, Myung S-T (2019) Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy 59:197–206

    Article  Google Scholar 

  12. Sehrawat D, Zhang J, Yu YW, Sharma D, N (2016) In situ studies of Li/Cu-doped layered P2 NaxMnO2 electrodes for sodium-ion batteries. Small Methods 3:1800092

    Article  Google Scholar 

  13. Yang L, Li X, Ma X, Xiong S, Liu P, Tang Y, Cheng S, Hu Y, Liu M, Chen H (2018) Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: a study on P2-Nax(LiyMn1–y)O2 compounds. J Power Sources 381:171–180

    Article  CAS  Google Scholar 

  14. Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Miller D, DeWahl A, Hackney S, Key B, Kim D, Slater M, Johnson CS (2014) Layered P2/O3 intergrowth cathode: toward high power Na-ion batteries. Adv Energy Mater 4:1400458

    Article  Google Scholar 

  15. Hou. P, Li F, Zhang H, Huang H (2020) Stabilizing the cationic/anionic redox chemistry of Li-rich layered cathodes by tuning the upper cut-off voltage for high energy-density lithium-ion batteries. J Mater Chem A 8:14214–14222 ()

    Article  CAS  Google Scholar 

  16. Koga H, Croguennec L, M´en´etrier M, Douhil K, Belin SE, Bourgeois L, Suard E, Weill FO, Delmasa C (2013) Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc 160:A786–A792

    Article  CAS  Google Scholar 

  17. Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu YS, Edstrom K, Guo J, Chadwick AV, Duda LC, Bruce PG (2016) Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 8:684–691

    Article  CAS  Google Scholar 

  18. Wang Q-C, Meng J-K, Yue X-Y, Qiu Q-Q, Song Y, Wu X-J, Fu Z-W, Xia Y-Y, Shadike Z, Wu J, Yang XQ, Zhou Y-N (2019) Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc 141:840–848

    Article  CAS  Google Scholar 

  19. Song B, Hu E, Liu J, Zhang Y, Yang X-Q, Nanda J, Huq A, Page K (2019) A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox. J Mater Chem A 7:1491–1498

    Article  CAS  Google Scholar 

  20. Yang L, Li X, Liu J, Xiong S, Ma X, Liu P, Bai J, Xu W, Tang Y, Hu YY, Liu M, Chen H (2019) Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J Am Chem Soc 141:6680–6689

    Article  CAS  Google Scholar 

  21. Llave E, Talaie E, Levi E, Nayak P-K, Dixit M, Rao P-T, Hartmann P, Chesneau F, Major DT, Greenstein M, Aurbach D, Nazar LF (2016) Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem Mater 28:9064–9076

    Article  Google Scholar 

  22. House RA, Maitra U, Jin L, Lozano JG, Somerville JW, Rees NH, Naylor AJ, Duda LC, Massel F, Chadwick AV, Ramos S, Pickup DM, McNally DE, Lu X, Schmitt T, Roberts MR, Bruce PG (2019) What triggers oxygen loss in oxygen redox cathode materials? Chem Mater 31:3293–3300

    Article  Google Scholar 

  23. Chen X, Li N, Kedzie E, McCloskey BD, Tang H, T, Wei (2019) High-capacity P2-type NaxLi0.25Mn0.75O2 cathode enabled by anionic oxygen redox. J Electrochem Soc 166:A4136–A4140

    Article  CAS  Google Scholar 

  24. Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA (2017) Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-Ion batteries. J Electrochem Soc 164(7):A1361–A1377

    Article  CAS  Google Scholar 

  25. Xu H, Chen C, Chu S, Zhang X, Wu J, Zhang L, Guo S, Zhou H (2020) Anion–cation synergetic contribution to high capacity, structurally stable cathode materials for sodium-ion batteries. Adv Funct Mater 30(50):2005164, 1–7

    Google Scholar 

  26. Xu S, Wu J, Hu E, Li Q, Zhang J, Wang Y, Stavitski E, Jiang L, Rong X, Yu X, Yang W, Yang X-Q, Chen L, Hu Y-S (2018) Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. J Mater Chem A 6:20795–20803

    Article  CAS  Google Scholar 

  27. Guo S, Sun Y, Yi J, Zhu K, Liu P, Zhu Y, Zhu G-z, Chen M, Ishida M, Zhou H (2016) Corrigendum: Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance. Asia Materials 8(7):e266.1-e266.9

    Google Scholar 

  28. Rahman MM, Mao J, Kan WH, Sun C-J, Li LX, Zhang Y, Avdeev M, Du X-W, Lin F (2019) An ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteries. ACS Mater Lett 1:573–581

    Article  CAS  Google Scholar 

  29. Chen X, Cheng C, Ding M, Xia Y, Chang LY, Chan TS, Tang H, Zhang N, Zhang L (2020) Elucidating the redox behavior in different P-type layered oxides for sodium-ion batteries. ACS Appl Mater Interfaces 12(39):43665–43673

    Article  CAS  Google Scholar 

  30. Mu L, Hou Q, Yang Z, Zhang Y, Rahman MM, Kautz DJ, Sun E, Du X-W, Du Y, Nordlund D, Lin F (2019) Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries. J Electrochem Soc 166:A251–A257

    Article  CAS  Google Scholar 

  31. Li Y, Gao Y, Wang X, Shen X, Kong Q, Yu R, Lu G, Wang Z, Chen L (2018) Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy 47:519–526

    Article  CAS  Google Scholar 

  32. Yoon W-S, Balasubramanian M, Chung KY, Yang X-Q, McBreen J, Grey CPF, Daniel A (2005) Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1–xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J Am Chem Soc 127:17479–17487

    Article  CAS  Google Scholar 

  33. Luo K, Roberts MR, Guerrini N, Tapia-Ruiz N, Hao R, Massel F, Pickup DM, Ramos S, Liu Y-S, Guo J, Chadwick AV, Duda LC, Bruce PG (2016) Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J Am Chem Soc 138:11211–11218

    Article  CAS  Google Scholar 

  34. Hy S, Su W-N, Chen J-M, Hwang B-J (2012) Soft X-ray absorption spectroscopic and raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J Phys Chem C 116:25242–25247

    Article  CAS  Google Scholar 

  35. Hu Y, Liu T, Cheng C, Yan Y, Ding M, Chan TS, Guo J, Zhang L (2020) Quantification of anionic redox chemistry in a prototype Na-rich layered oxide. ACS Appl Mater Interfaces 12:3617–3623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Nos. 51976143 and 21401145. We thank TLS (beamline 16A1) for the allocation of synchrotron beamtime. We also thank Manlin Ding and Chen Cheng (Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University) for the help with the synchrotron testing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, X.C.; writing–original draft preparation, X. C., and J. S.; review & editing, J.L.; and H. Z.; project administration, H.T.; funding acquisition, H.T.

Corresponding author

Correspondence to Haolin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Song, J., Li, J. et al. A P2/P3 composite-layered cathode material with low-voltage decay for sodium-ion batteries. J Appl Electrochem 51, 619–627 (2021). https://doi.org/10.1007/s10800-020-01522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01522-0

Keywords

Navigation