Skip to main content
Log in

Stainless steel substrate pretreatment effects on copper nucleation and stripping during copper electrowinning

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of surface pretreatment of 304 stainless steel (SS) substrates on copper film formation, adhesion, and purity obtained by galvanostatic electrodeposition at a current density of – 30 mA cm−2 are presented. The polished substrate produced more copper nuclei, resulting in an increase of the adhesion as compared to chemically oxidized SS substrate. The adhesion of the copper deposits was characterized by a Nano-scratch tester (NST). The nucleation behavior is associated with the flatband potential of the SS surface, which was derived from capacitance measurements. The grain size of copper deposits was characterized by field emission scanning electron microscopy (FESEM). Copper grains were smaller on the polished SS with a size of less than 1 µm after 5 min of electrodeposition. High-purity copper deposits with < 1 ppm S (detection limit) were obtained on the oxidized SS substrate compared to 2.5 ppm for the polished SS substrate. Atomic force microscopy (AFM) measurements showed that the copper deposits were 25% less rough on the polished SS as compared to the oxidized SS. The results indicate that the obtained purity of the copper deposit relates to the grain size of the deposit, rather than the initial surface roughness. In the context of industrial electrowinning, high adherence to the polished substrate could increase the operation time of the copper cathode stripping. Hence for electrowinning from copper sulfate electrolytes, oxidizing the SS surface prior to deposition could lead to higher purity along with enhanced stripping.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data aavailability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The custom made software used in the study is available from the corresponding author on reasonable request.

References

  1. Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper. Elsevier, Amsterdam

    Google Scholar 

  2. Cui W, Moats M (2014) Effect and interactions of commercial additives and chloride ion in copper electrowinning. Missouri Univerity of Science and Technology, Rolla

    Google Scholar 

  3. Aromaa J, Kekki A, Stefanova A, Forsén O (2012) Copper nucleation and growth patterns on stainless steel cathode blanks in copper electrorefining. J Solid State Electrochem 16:3529–3537. https://doi.org/10.1007/s10008-012-1898-x

    Article  CAS  Google Scholar 

  4. Cooper WC (1985) Advances and future prospects in copper electrowinning. J Appl Electrochem 15:789–805. https://doi.org/10.1007/BF00614357

    Article  CAS  Google Scholar 

  5. Alfantazi AM, Valic D (2003) A study of copper electrowinning parameters using a statistically designed methodology. J Appl Electrochem 33:217–225. https://doi.org/10.1023/A:1024014727082

    Article  CAS  Google Scholar 

  6. Mackinnon DJ, Lakshmanan VI, Brannen JM (1978) The effect of glue, LIX65N and chloride ion on the morphology of electrowon copper. J Appl Electrochem 8:223–234. https://doi.org/10.1007/BF00616425

    Article  CAS  Google Scholar 

  7. Sun M, O’Keefe TJ (1992) The effect of additives on the nucleation and growth of copper onto stainless steel cathodes. MTB 23:591–599. https://doi.org/10.1007/BF02649719

    Article  Google Scholar 

  8. Luyima A, Cui W, Heckman C, Moats MS (2016) Examination of copper electrowinning smoothing agents. Part IV: nucleation and growth of copper on stainless steel. Miner Metall Process 33:39–46. https://doi.org/10.19150/mmp.6465

    Article  Google Scholar 

  9. Owais A (2009) Effect of electrolyte characteristics on electrowinning of copper powder. J Appl Electrochem 39:1587–1595. https://doi.org/10.1007/s10800-009-9845-y

    Article  CAS  Google Scholar 

  10. Andersen TN, Pitt CH, Livingston LS (1983) Nodulation of electrodeposited copper due to suspended particulate. J Appl Electrochem 13:429–438. https://doi.org/10.1007/BF00617517

    Article  CAS  Google Scholar 

  11. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55:4086–4091. https://doi.org/10.1016/j.electacta.2010.02.038

    Article  CAS  Google Scholar 

  12. Zhao T, Zagidulin D, Szymanski G, Lipkowski J (2006) Application of atomic force microscopy and scaling analysis of images to predict the effect of current density, temperature and leveling agent on the morphology of electrolytically produced copper. Electrochim Acta 51:2255–2260. https://doi.org/10.1016/j.electacta.2005.06.042

    Article  CAS  Google Scholar 

  13. Getrouw MA, Dutra AJB (2001) The influence of some parameters on the surface roughness of thin copper foils using statistical analysis. J Appl Electrochem 31:1359–1366. https://doi.org/10.1023/A:1013823021551

    Article  CAS  Google Scholar 

  14. Nuñez M (2005) Metal electrodeposition. Nova Publishers, New York

    Google Scholar 

  15. Urda M, Oniciu L, Delplancke J-L, Winand R (1997) Influence of phosphorous acid on the nucleation and growth of copper. J Appl Electrochem 27:616–620. https://doi.org/10.1023/A:1018467200031

    Article  CAS  Google Scholar 

  16. Tarallo A, Heerman L (1999) Influence of thiourea on the nucleation of copper on polycrystalline platinum. J Appl Electrochem 29:585–591. https://doi.org/10.1023/A:1003410720266

    Article  CAS  Google Scholar 

  17. Kim S-B, Kim K-T, Park C-J, Kwon H-S (2002) Electrochemical nucleation and growth of copper on chromium-plated electrodes. J Appl Electrochem 32:1247–1255. https://doi.org/10.1023/A:1021610813395

    Article  CAS  Google Scholar 

  18. Gu M, Zhong Q (2011) Copper electrocrystallization from acidic sulfate electrolyte containing MPS additive. J Appl Electrochem 41:765. https://doi.org/10.1007/s10800-011-0293-0

    Article  CAS  Google Scholar 

  19. Dutra AJB, O’Keefe TJ (1999) Copper nucleation on titanium for thin film applications. J Appl Electrochem 29:1217–1227. https://doi.org/10.1023/A:1003537318303

    Article  CAS  Google Scholar 

  20. Adcock PA, Quillinan A, Clark B et al (2004) Measurement of polarization parameters impacting on electrodeposit morphology. II: conventional zinc electrowinning solutions. J Appl Electrochem 34:771–780. https://doi.org/10.1023/B:JACH.0000035604.53451.25

    Article  CAS  Google Scholar 

  21. Adcock PA, Adeloju SB, Newman OMG (2002) Measurement of polarization parameters impacting on electrodeposit morphology I: theory and development of technique. J Appl Electrochem 32:1101–1107. https://doi.org/10.1023/A:1021251603240

    Article  CAS  Google Scholar 

  22. Muresan L, Nicoara A, Varvara S, Maurin G (1999) Influence of Zn2 + ions on copper electrowinning from sulfate electrolytes. J Appl Electrochem 29:723–731. https://doi.org/10.1023/A:1003474616691

    Article  Google Scholar 

  23. Moats MS, Derrick A (2012) Investigation of nucleation and plating overpotentials during copper electrowinning using the Galvanostatic Staircase Method. Electrometallurgy 2012. Wiley, Hoboken, pp 125–137

    Chapter  Google Scholar 

  24. Delplancke J-L, Sun M, O’Keefe TJ, Winand R (1990) Production of thin copper foils on microporous titanium oxide substrates. Hydrometallurgy 24:179–187. https://doi.org/10.1016/0304-386X(90)90085-G

    Article  CAS  Google Scholar 

  25. Delplancke J-L, Sun M, O’Keefe TJ, Winand R (1989) Nucleation of electrodeposited copper on anodized titanium. Hydrometallurgy 23:47–66. https://doi.org/10.1016/0304-386X(89)90017-0

    Article  CAS  Google Scholar 

  26. Delplancke J-L, Ongaro M, Winand R (1992) Growth of electrodeposited copper on anodized titanium. J Appl Electrochem 22:843–851. https://doi.org/10.1007/BF01023728

    Article  CAS  Google Scholar 

  27. Zhou Z, O’Keefe TJ (1998) Electrodeposition of copper on thermally oxidized 316 L stainless steel substrates. J Appl Electrochem 28:461–469. https://doi.org/10.1023/A:1003209009910

    Article  CAS  Google Scholar 

  28. Heakal FE-T, Shehata OS (2020) Insight into the electrochemical and semiconducting properties of native oxide films on Ti metal and its Ti–6Al–4V alloy in borate buffer solutions. Prot Met Phys Chem Surf. https://doi.org/10.1134/S2070205120020082

    Article  Google Scholar 

  29. Yue Y, Liu C, Shi P, Jiang M (2018) Passivity of stainless steel in sulphuric acid under chemical oxidation. Corros Eng Sci Technol 53:173–182. https://doi.org/10.1080/1478422X.2017.1388648

    Article  CAS  Google Scholar 

  30. Tsuchiya H, Fujimoto S, Chihara O, Shibata T (2002) Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochim Acta 47:4357–4366. https://doi.org/10.1016/S0013-4686(02)00508-X

    Article  CAS  Google Scholar 

  31. Ohtsuka T, Abe M, Ishii T (2015) The effect of impurity concentration and Cr content on the passive oxide films in ferritic stainless steels. J Electrochem Soc 162:C528. https://doi.org/10.1149/2.0621510jes

    Article  CAS  Google Scholar 

  32. Ohtsuka T, Hyono A, Sasaki Y (2012) Potential modulation reflectance of passivated type 304 stainless steel in sulfuric acid solution. Electrochim Acta 60:384–391. https://doi.org/10.1016/j.electacta.2011.11.064

    Article  CAS  Google Scholar 

  33. Coelho LB, Kossman S, Mejias A et al (2020) Mechanical and corrosion characterization of industrially treated 316L stainless steel surfaces. Surf Coat Technol 382:125175. https://doi.org/10.1016/j.surfcoat.2019.125175

    Article  CAS  Google Scholar 

  34. Cámara OR, de Pauli CP, Vaschetto ME et al (1995) Semiconducting properties of TiO2 films thermally formed at 400 °C. J Appl Electrochem 25:247–251. https://doi.org/10.1007/BF00262963

    Article  Google Scholar 

  35. Mahboob SS, Swanson K, Gonzalez JA, Shepherd JL (2016) On the use of atomic force microscopy and scaling analysis to quantify the roughness of zinc electrodeposits produced from an industrial acid sulfate electrolyte containing glue. J Appl Electrochem 46:539–549. https://doi.org/10.1007/s10800-016-0943-3

    Article  CAS  Google Scholar 

  36. Robinson TG, Sole KC, Sandoval S et al (2013) Copper electrowinning—2013 world tankhouse operating data. Santiago, Chile, p 13

  37. Yoshioka T, Matsushima H, Ueda M (2018) In situ observation of Cu electrodeposition and dissolution on Au(100) by high-speed atomic force microscopy. Electrochem Commun 92:29–32. https://doi.org/10.1016/j.elecom.2018.05.019

    Article  CAS  Google Scholar 

  38. Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47:2901–2912. https://doi.org/10.1016/S0013-4686(02)00161-5

    Article  CAS  Google Scholar 

  39. Rangel CM, Silva TM, Belo M da C (2005) Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels. Electrochim Acta 50:5076–5082. https://doi.org/10.1016/j.electacta.2005.03.064

    Article  CAS  Google Scholar 

  40. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  41. Olsson C-OA, Landolt D (2003) Passive films on stainless steels—chemistry, structure and growth. Electrochim Acta 48:1093–1104. https://doi.org/10.1016/S0013-4686(02)00841-1

    Article  CAS  Google Scholar 

  42. Ramanathan R, Voorhees PW (2019) Morphological stability of steady-state passive oxide films. Electrochim Acta 303:299–315. https://doi.org/10.1016/j.electacta.2019.01.146

    Article  CAS  Google Scholar 

  43. Burstein GT, Liu C, Souto RM, Vines SP (2004) Origins of pitting corrosion. Corros Eng Sci Technol 39:25–30. https://doi.org/10.1179/147842204225016859

    Article  CAS  Google Scholar 

  44. Hamm D, Ogle K, Olsson C-OA et al (2002) Passivation of Fe–Cr alloys studied with ICP-AES and EQCM. Corros Sci 44:1443–1456. https://doi.org/10.1016/S0010-938X(01)00147-0

    Article  CAS  Google Scholar 

  45. Keller P, Strehblow H-H (2004) XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corros Sci 46:1939–1952. https://doi.org/10.1016/j.corsci.2004.01.007

    Article  CAS  Google Scholar 

  46. Asami K, Hashimoto K, Shimodaira S (1978) An XPS study of the passivity of a series of iron–chromium alloys in sulphuric acid. Corros Sci 18:151–160. https://doi.org/10.1016/S0010-938X(78)80085-7

    Article  CAS  Google Scholar 

  47. Kirchheim R, Heine B, Hofmann S, Hofsäss H (1990) Compositional changes of passive films due to different transport rates and preferential dissolution. Corros Sci 31:573–578. https://doi.org/10.1016/0010-938X(90)90164-Z

    Article  CAS  Google Scholar 

  48. Calinski C, Strehblow H-H (1989) ISS depth profiles of the passive layer on Fe/Cr alloys. J Electrochem Soc 136:1328. https://doi.org/10.1149/1.2096915

    Article  CAS  Google Scholar 

  49. Bard A, Faulker L (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  50. Plieth W (2010) The process chain of electrodeposition. Russ J Electrochem 46:1119–1124. https://doi.org/10.1134/s1023193510100071

    Article  CAS  Google Scholar 

  51. Milchev A (1985) Contribution to the theory of nucleation on preferred sites—I. Electrochim Acta 30:125–131. https://doi.org/10.1016/0013-4686(85)80070-0

    Article  CAS  Google Scholar 

  52. Bindra P, Gerischer H, Kolb DM (1977) Electrolytic deposition of thin metal films on semiconductor substrates. J Electrochem Soc 124:1012–1018. https://doi.org/10.1149/1.2133471

    Article  CAS  Google Scholar 

  53. Raposo M, Ferreira Q (2007) A guide for atomic force microscopy analysis of soft-condensed matter. In: Modern research and educational topics in microscopy. Formatex, Badajoz

    Google Scholar 

  54. Maksumov A, Vidu R, Palazoglu A, Stroeve P (2004) Enhanced feature analysis using wavelets for scanning probe microscopy images of surfaces. J Colloid Interface Sci 272:365–377. https://doi.org/10.1016/j.jcis.2003.09.047

    Article  CAS  PubMed  Google Scholar 

  55. Murray A, Khakbaz H, Pranowo A et al (2016) Effects of process parameters on the adhesive strength of copper electrodeposits in a bench-scale electrowinning cell. Miner Process Ext Metall 125:10–16. https://doi.org/10.1080/03719553.2015.1109183

    Article  CAS  Google Scholar 

  56. Kossowsky R (1989) Surface modeling engineering. CRC Press, Boca Raton

    Google Scholar 

  57. Schultze JW, Osaka T, Datta M, Staikov G (2002) Electrochemical microsystem technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  58. Ivshin YV, Shaikhutdinova FN, Sysoev VA (2018) Electrodeposition of copper on mild steel: peculiarities of the process. Surf Eng Appl Electrochem 54:452–458. https://doi.org/10.3103/S1068375518050046

    Article  Google Scholar 

  59. London Metal Exchange: LME Copper Physical. https://www.lme.com/Metals/Non-ferrous/Copper/Physical. Accessed 16 Jun 2019

  60. Korzhavyi PA, Abrikosov IA, Johansson B (1999) Theoretical investigation of sulfur solubility in pure copper and dilute copper-based alloys. Acta Mater 47:1417–1424. https://doi.org/10.1016/S1359-6454(99)00036-1

    Article  CAS  Google Scholar 

  61. Abrahams MS, Rao ST, Buiocchi CJ, Trager L (1986) Decorated boundaries observed in copper electrodeposits. J Electrochem Soc 133:1786. https://doi.org/10.1149/1.2109019

    Article  CAS  Google Scholar 

  62. Wasekar NP, O’Mullane AP, Sundararajan G (2019) A new model for predicting the grain size of electrodeposited nanocrystalline nickel coatings containing sulphur, phosphorus or boron based on typical systems. J Electroanal Chem 833:198–204. https://doi.org/10.1016/j.jelechem.2018.11.057

    Article  CAS  Google Scholar 

  63. Haumesser P-H (2016) 3—The precipitation of metals: thin film electroplating and nanoparticle synthesis. In: Haumesser P-H (ed) Nucleation and growth of metals. Elsevier, Amsterdam, pp 59–70

    Chapter  Google Scholar 

  64. Winand R (1991) Electrocrystallization: fundamental considerations and application to high current density continuous steel sheet plating. J Appl Electrochem 21:377–385. https://doi.org/10.1007/BF01024572

    Article  CAS  Google Scholar 

  65. Winand R (1992) Electrocrystallization—theory and applications. Hydrometallurgy 29:567–598. https://doi.org/10.1016/0304-386X(92)90033-V

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Flemish Agency for Innovation and Entrepreneurship (Vlaio) via a Baekeland PhD fellowship to Florian Verbruggen (HBC.2017.0224) and by the Research & Development Umicore Group. EF is supported by the Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO) PROJECT G020616N. KR and AP are supported by a Ghent University Bijzonder Onderzoeksfonds GOA grant (BOF19/GOA/026). LB is supported by the Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO) PROJECT 3G0I1818W. The authors thank Umicore for the permission to publish the results. We gratefully acknowledge Louis Van der Meeren for performing the AFM measurements.

Funding

This research was financially supported by the Flemish Agency for Innovation and Entrepreneurship (Vlaio) via a Baekeland PhD fellowship to Florian Verbruggen (HBC.2017.0224) and by the Research & Development Umicore Group. EF is supported by the Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO) PROJECT G020616N. KR and AP are supported by a Ghent University Bijzonder Onderzoeksfonds GOA grant (BOF19/GOA/026). LB is supported by the Fonds voor Wetenschappelijk Onderzoek - Vlaanderen (FWO) PROJECT 3G0I1818W.

Author information

Authors and Affiliations

Authors

Contributions

FV: conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, and visualization. EF: methodology, validation, writing, review & editing. LB: investigation, methodology, validation, writing, review & editing. AP: methodology, validation, writing, review & editing. MSM: supervision, resources, review & editing, and conceptualization. TH: supervision, project administration, resources, and conceptualization. KR: supervision, project administration, resources, visualization, and review. 

Corresponding author

Correspondence to Korneel Rabaey.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10887.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbruggen, F., Fiset, E., Bonin, L. et al. Stainless steel substrate pretreatment effects on copper nucleation and stripping during copper electrowinning. J Appl Electrochem 51, 219–233 (2021). https://doi.org/10.1007/s10800-020-01485-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01485-2

Keywords

Navigation