Skip to main content
Log in

Synthesis of NiHPO4–Ni(OH)2 nanowire-assembled bouquets for electrocatalytic oxidation of methanol and urea

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The NiHPO4–Ni(OH)2 nanowire-assembled bouquets were easily synthesized. Scanning electron microscopy and transmission electron microscopy show the NiHPO4–Ni(OH)2 bouquets form through the organization of nanowires which arrange with certain direction. The electrocatalytic activities of NiHPO4–Ni(OH)2–GCE towards the oxidation of methanol and urea were studied in NaOH. The nanowire-assembled bouquets were modified on the surface of the glassy carbon electrode, leading to the increase on the surface area of the electrode, which in turn enhanced the current density and electrocatalytic performance for the oxidation of methanol and urea. It shows the potential applications for the utilization of these energy molecules.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang F, Pei Y, Ge Y, Chu H et al (2018) Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting. Adv Mater Inter 5(8):1701507

    Article  Google Scholar 

  2. Xiao M, Miao Y, Li W, Yang Y et al (2015) Onsite deposition of self-repairing biomimetic nanostructured Ni catalysts with improved electrocatalysis toward glycerol oxidation for H2 production. Electrochim Acta 178:209–216

    Article  CAS  Google Scholar 

  3. Hao M, Xiao M, Qian L, Miao Y (2018) Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Front Chem Sci Eng 12(3):409–416

    Article  CAS  Google Scholar 

  4. Miao Y, Ouyang L, Zhou S, Xu L et al (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439

    Article  CAS  Google Scholar 

  5. Fa D, Zhou M, Zhao H, Jiang Y et al (2018) 3D flower-like Ni–Co–S with high specific surface area for the electrocatalytic oxidation of methanol. Polyhedron 144:11–17

    Article  CAS  Google Scholar 

  6. Guo J, Chen R, Zhu FC, Sun SG et al (2018) New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl Catal B 224:602–611

    Article  CAS  Google Scholar 

  7. Hassaninejad-Darzi SK, Gholami-Esfidvajani M (2016) Electrocatalytic oxidation of ethanol using modified nickel phosphate nanoparticles and multi-walled carbon nanotubes paste electrode in alkaline media for fuel cell. Int J Hydrogen Energy 41(44):20085–20099

    Article  CAS  Google Scholar 

  8. Lesiak B, Malolepszy A, Mazurkiewicz-Pawlicka M, Stobinski L et al (2018) A high stability AuPd-ZrO2-multiwall carbon nanotubes supported-catalyst in a formic acid electro-oxidation reaction. Appl Surf Sci 451:289–297

    Article  CAS  Google Scholar 

  9. Song X, Gao L, Li Y, Chen W et al (2017) Nickel phosphate-based materials with excellent durability for urea electro-oxidation. Electrochim Acta 251:284–292

    Article  CAS  Google Scholar 

  10. Wu M-S, Lin G-W, Yang R-S (2014) Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. J Power Sources 272:711–718

    Article  CAS  Google Scholar 

  11. Asal YM, Al-Akraa IM, Mohammad AM, El-Deab MS (2019) Design of efficient bimetallic Pt–Au nanoparticle-based anodes for direct formic acid fuel cells. Int J Hydrogen Energy 44(7):3615–3624

    Article  CAS  Google Scholar 

  12. Mazurkiewicz-Pawlicka M, Malolepszy A, Mikolajczuk-Zychora A, Mierzwa B et al (2019) A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells. Appl Surf Sci 476:806–814

    Article  CAS  Google Scholar 

  13. Rao KJ, Paria S (2015) Mixed phytochemicals mediated synthesis of multifunctional Ag-Au-Pd nanoparticles for glucose oxidation and antimicrobial applications. ACS Appl Mater Interfaces 7(25):14018–14025

    Article  CAS  Google Scholar 

  14. Arukula R, Vinothkannan M, Kim AR, Yoo DJ (2019) Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: an efficient anode catalyst for direct methanol fuel cells. J Alloys Compd 771:477–488

    Article  CAS  Google Scholar 

  15. Wang Q, Wu M, Meng S, Zang X et al (2016) Hydrazine sensor based on Co3O4/rGO/carbon cloth electrochemical electrode. Adv Mater Interfaces 3(12):1500691

    Article  Google Scholar 

  16. Zhou M, Ouyang R, Li Y, Miao Y (2017) 3D microspheres organized from Ni-Mo-S nanoparticles in situ synthesized on porous Ti for hydrogen evolution electrocatalysis. Electrochim Acta 246:9–16

    Article  CAS  Google Scholar 

  17. Bhowmik T, Kundu MK, Barman S (2016) Growth of one dimensional RuO2 nanowires on g-carbon nitride: an active and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions at all pH values. ACS Appl Mater Interfaces 8(42):28678–28688

    Article  CAS  Google Scholar 

  18. Hao M, Xiao M, Yan Y, Miao Y (2017) Synthesizing amorphous Ni-P micro-/nano-composites with perfect roundness or embryo-like structures. Adv Powder Tech 28(11):3095–3103

    Article  CAS  Google Scholar 

  19. Li L, Liu X, Liu C, Wan H et al (2018) Ultra-long life nickel nanowires@nickel-cobalt hydroxide nanoarrays composite pseudocapacitive electrode: Construction and activation mechanism. Electrochim Acta 259:303–312

    Article  CAS  Google Scholar 

  20. Alia SM (2016) Oxidation of platinum nickel nanowires to limit displacement and improve the durability characteristics of oxygen-reducing electrocatalysts. J Electrochem Soc 163(3):F296–F301

    Article  CAS  Google Scholar 

  21. Ramakrishnan S, Karuppannan M, Vinothkannan M, Ramachandran K et al (2019) Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS Appl Mater Interfaces 11(13):12504–12515

    Article  CAS  Google Scholar 

  22. Zhou M, Liu Y, Fa D, Qian L et al (2018) Growth of radial microspheres of Ni-Co-O at porous Ti and its phosphorization for high efficient hydrogen evolution. Electrochim Acta 259:329–337

    Article  CAS  Google Scholar 

  23. Touny AH, Tammam RH, Saleh MM (2018) Electrocatalytic oxidation of formaldehyde on nanoporous nickel phosphate modified electrode. Appl Catal B 224:1017–1026

    Article  CAS  Google Scholar 

  24. Song X, Sun Q, Gao L, Chen W et al (2018) Nickel phosphate as advanced promising electrochemical catalyst for the electro-oxidation of methanol. Int J Hydrogen Energy 43(27):12091–12102

    Article  CAS  Google Scholar 

  25. Danzer K (2007) Analytical chemistry, theoretical and metrological fundamentals. Springer, Berlin

    Google Scholar 

  26. Xiao M, Tian Y, Yan Y, Feng K et al (2015) Electrodeposition of Ni(OH)2/NiOOH in the presence of urea for the improved oxygen evolution. Electrochim Acta 164:196–202

    Article  CAS  Google Scholar 

  27. Urbańczyk E, Jaroń A, Simka W (2018) Ni Pt sinter as a promising electrode for methanol electrocatalytic oxidation. Int J Hydrogen Energy 43(36):17156–17163

    Article  Google Scholar 

  28. Yang D, Yu Q, Gao L, Mao L et al (2017) The additive effect of graphene in nickel phosphate/graphene composite and enhanced activity for electrochemical oxidation of methanol. Appl Surf Sci 416:503–510

    Article  CAS  Google Scholar 

  29. Tammam RH, Saleh MM (2017) On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode. J Electroanal Chem 794:189–196

    Article  CAS  Google Scholar 

  30. Yue Z, Yao S, Li Y, Zhu W et al (2018) Surface engineering of hierarchical Ni(OH)2 nanosheet@nanowire configuration toward superior urea electrolysis. Electrochim Acta 268:211–217

    Article  CAS  Google Scholar 

  31. Abdel Hameed RM, Medany SS (2017) NiO nanoparticles on graphene nanosheets at different calcination temperatures as effective electrocatalysts for urea electro-oxidation in alkaline medium. J Colloid Interface Sci 508:291–302

    Article  CAS  Google Scholar 

  32. Shobha T, Aravinda CL, Gomathi Devi L, Mayanna SM (2003) Preparation and characterization of oxides of Ni-Cu: anode material for methanol oxidative fuel cells. J Solid State Electrochem 7(8):451–455

    Article  CAS  Google Scholar 

  33. Bao T, Song L, Zhang S (2018) Synthesis of carbon quantum dot-doped NiCoP and enhanced electrocatalytic hydrogen evolution ability and mechanism. Chem Eng J 351:189–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the support from the Shanghai Natural Science Foundation (19ZR1434800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fa, D., Miao, Y. Synthesis of NiHPO4–Ni(OH)2 nanowire-assembled bouquets for electrocatalytic oxidation of methanol and urea. J Appl Electrochem 50, 1091–1099 (2020). https://doi.org/10.1007/s10800-020-01463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01463-8

Keywords

Navigation