Skip to main content
Log in

Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Different micro–mesoporous carbons derived from d-glucose (GDC), granulated white sugar (WSDC) and highly decomposed Estonian peat (PDC) were synthesized using hydrothermal carbonization and direct activation methods. The resulting carbonaceous materials were activated using chemical (KOH and ZnCl2) and physical (CO2) activation methods. The electrochemical characteristics of the electrical double-layer capacitors (EDLCs) based on 1 M Et3MeNBF4 solution in acetonitrile and EtMeImBF4 were measured using two-electrode cells. The EDLCs assembled had specific capacitances from 20 up to 158 ± 18 F g−1 (in EtMeImBF4) and phase angle values from − 65° to − 88° (at low frequencies). The characteristic time constant values vary more than 10 times. Applying constant power discharge method, very high energy and power densities (34 W h kg−1 at 10 kW kg−1) for activated carbon powders-based EDLCs have been measured. Fitting of impedance data showed that enhanced mesoporosity reduces the adsorption and mass-transfer resistance values.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New York

    Google Scholar 

  2. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Google Scholar 

  3. Burke A, Miller M (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J Power Sources 196:514–522

    CAS  Google Scholar 

  4. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    CAS  Google Scholar 

  5. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    CAS  Google Scholar 

  6. Gogotsi Y, Nikitin A, Ye H et al (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594

    CAS  PubMed  Google Scholar 

  7. Zuo W, Li R, Zhou C et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600359

    Google Scholar 

  8. Härmas R, Palm R, Härmas M et al (2018) Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochim Acta 283:931–948

    Google Scholar 

  9. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25

    Google Scholar 

  10. Pohl M, Tallo I, Jänes A et al (2018) Increasing the stability of very high potential electrical double layer capacitors by operando passivation. J Power Sources 402:53–61

    CAS  Google Scholar 

  11. Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161

    Google Scholar 

  12. Singhal SC (2014) Solid oxide fuel cells for power generation. Wiley Interdiscip Rev Energy Environ 3:179–194

    CAS  Google Scholar 

  13. Tallo I, Thomberg T, Kurig H et al (2013) Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. J Solid State Electrochem 17:19–28

    CAS  Google Scholar 

  14. Tee E, Tallo I, Kurig H et al (2015) Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC. Electrochim Acta 161:364–370

    CAS  Google Scholar 

  15. Tee E, Tallo I, Thomberg T et al (2016) Supercapacitors based on activated silicon carbide-derived carbon materials and ionic liquid. J Electrochem Soc 163:A1317–A1325

    CAS  Google Scholar 

  16. Laheäär A, Jänes A, Lust E (2011) Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts. Electrochim Acta 56:9048–9055

    Google Scholar 

  17. Tallo I, Thomberg T, Kontturi K et al (2011) Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide. Carbon 49:4427–4433

    CAS  Google Scholar 

  18. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    CAS  Google Scholar 

  19. Jänes A, Permann L, Arulepp M, Lust E (2004) Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochem Commun 6:313–318

    Google Scholar 

  20. Thomberg T, Jänes A, Lust E (2009) Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 630:55–62

    CAS  Google Scholar 

  21. Kockrick E, Schrage C, Borchardt L et al (2010) Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 48:1707–1717

    CAS  Google Scholar 

  22. Sepp S, Härk E, Valk P et al (2014) Impact of the Pt catalyst on the oxygen electroreduction reaction kinetics on various carbon supports. J Solid State Electrochem 18:1223–1229

    CAS  Google Scholar 

  23. Lust E, Vaarmets K, Nerut J et al (2014) Influence of specific surface area and microporosity-mesoporosity of pristine and Pt-nanoclusters modified carbide derived carbon electrodes on the oxygen electroreduction. Electrochim Acta 140:294–303

    CAS  Google Scholar 

  24. Lust E, Tamm K, Nurk G et al (2015) Development of medium-temperature solid oxide fuel cells and CO2 and H2O co-electrolysis cells in Estonia. ECS Trans 68:3407–3415

    CAS  Google Scholar 

  25. Varin R, Czujko T, Wronski Z, Zaranski Z (2009) Nanomaterials for hydrogen storage produced by ball milling. Can Metall Q 48:11–25

    CAS  Google Scholar 

  26. Palm R, Kurig H, Aruväli J, Lust E (2018) NaAlH4/microporous carbon composite materials for reversible hydrogen storage. Microporous Mesoporous Mater 264:8–12

    CAS  Google Scholar 

  27. Tõnurist K, Thomberg T, Jänes A, Lust E (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160:A449–A457

    Google Scholar 

  28. Tõnurist K, Thomberg T, Jänes A et al (2012) Specific performance of electrical double layer capacitors based on different separator materials in room temperature ionic liquid. Electrochem Commun 22:77–80

    Google Scholar 

  29. Irvine JTS, Neagu D, Verbraeken MC et al (2016) Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1:15014

    CAS  Google Scholar 

  30. Thomberg T, Tooming T, Romann T et al (2013) High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and acetonitrile electrolyte. J Electrochem Soc 160:A1834–A1841

    CAS  Google Scholar 

  31. Härmas M, Thomberg T, Romann T et al (2017) Carbon for energy storage derived from granulated white sugar by hydrothermal carbonization and subsequent zinc chloride activation. J Electrochem Soc 164:A1866–A1872

    Google Scholar 

  32. Tooming T, Thomberg T, Siinor L et al (2014) A type high capacitance supercapacitor based on mixed room temperature ionic liquids containing specifically adsorbed iodide anions. J Electrochem Soc 161:A222–A227

    CAS  Google Scholar 

  33. Eskusson J, Jänes A, Kikas A et al (2011) Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 196:4109–4116

    CAS  Google Scholar 

  34. Jänes A, Eskusson J, Mattisen L, Lust E (2014) Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region. J Solid State Electrochem 19:769–783

    Google Scholar 

  35. Eskusson J, Rauwel P, Nerut J, Jänes A (2016) A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J Electrochem Soc 163:A2768–A2775

    CAS  Google Scholar 

  36. Laheäär A, Jänes A, Lust E (2012) NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochim Acta 82:309–313

    Google Scholar 

  37. Sigalov S, Levi MD, Salitra G et al (2012) Selective adsorption of multivalent ions into TiC-derived nanoporous carbon. Carbon 50:3957–3960

    CAS  Google Scholar 

  38. Laheäär A, Jänes A, Lust E (2014) Cesium carborane as an unconventional non-aqueous electrolyte salt for electrochemical capacitors. Electrochim Acta 125:482–487

    Google Scholar 

  39. Laheäär A, Peikolainen A-L, Koel M et al (2012) Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. J Solid State Electrochem 16:2717–2722

    Google Scholar 

  40. Kurig H, Jänes A, Lust E (2010) Electrochemical characteristics of carbide-derived carbon|1-ethyl-3-methylimidazolium tetrafluoroborate supercapacitor cells. J Electrochem Soc 157:A272–A279

    CAS  Google Scholar 

  41. Pohl M, Kurig H, Tallo I et al (2017) Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors. Chem Eng J 320:576–587

    CAS  Google Scholar 

  42. Härmas M, Thomberg T, Kurig H et al (2016) Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. J Power Sources 326:624–634

    Google Scholar 

  43. Kurig H, Vestli M, Tõnurist K et al (2012) Influence of room temperature ionic liquid anion chemical composition and electrical charge delocalization on the supercapacitor properties. J Electrochem Soc 159:A944–A951

    CAS  Google Scholar 

  44. Daikhin LI, Kornyshev AA, Urbakh M (1996) Double-layer capacitance on a rough metal surface. Phys Rev E 53:6192–6199

    CAS  Google Scholar 

  45. Daikhin LI, Kornyshev AA, Urbakh M (1998) Nonlinear Poisson-Boltzmann theory of a double layer at a rough metal/electrolyte interface: a new look at the capacitance data on solid electrodes. J Chem Phys 108:1715–1723

    CAS  Google Scholar 

  46. Daikhin LI, Kornyshev AA, Urbakh M (1997) Double layer capacitance on a rough metal surface: surface roughness measured by “Debye ruler”. Electrochim Acta 42:2853–2860

    CAS  Google Scholar 

  47. Lust E, Jänes A, Sammelselg V, Miidla P (2000) Influence of charge density and electrolyte concentration on the electrical double layer characteristics at rough cadmium electrodes. Electrochim Acta 46:185–191

    CAS  Google Scholar 

  48. Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111:5545–5557

    CAS  PubMed  Google Scholar 

  49. Ivaništšev V, O’Connor S, Fedorov MV (2014) Poly(a)morphic portrait of the electrical double layer in ionic liquids. Electrochem Commun 48:61–64

    Google Scholar 

  50. Kornyshev AA, Luque NB, Schmickler W (2014) Differential capacitance of ionic liquid interface with graphite: the story of two double layers. J Solid State Electrochem 18:1345–1349

    CAS  Google Scholar 

  51. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73

    Google Scholar 

  52. Kormann M, Popovska N (2010) Processing of carbide-derived carbons with enhanced porosity by activation with carbon dioxide. Microporous Mesoporous Mater 130:167–173

    CAS  Google Scholar 

  53. Li Z-Y, Akhtar MS, Kwak D-H, Yang O-B (2017) Improvement in the surface properties of activated carbon via steam pretreatment for high performance supercapacitors. Appl Surf Sci 404:88–93

    CAS  Google Scholar 

  54. Zhao Q, Wang X, Liu J et al (2015) Surface modification and performance enhancement of carbon derived from chromium carbide for supercapacitor applications. J Electrochem Soc 162:A845–A851

    CAS  Google Scholar 

  55. Lobato B, Suárez L, Guardia L, Centeno TA (2017) Capacitance and surface of carbons in supercapacitors. Carbon 122:434–445

    CAS  Google Scholar 

  56. Zhang Y-J, Xing Z-J, Duan Z-K et al (2014) Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Appl Surf Sci 315:279–286

    CAS  Google Scholar 

  57. Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833

    CAS  Google Scholar 

  58. Román S, González JF, González-García CM, Zamora F (2008) Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol 89:715–720

    Google Scholar 

  59. Osswald S, Portet C, Gogotsi Y et al (2009) Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J Solid State Chem Fr 182:1733–1741

    CAS  Google Scholar 

  60. Eikerling M, Kornyshev AA, Lust E (2005) Optimized structure of nanoporous carbon-based double-layer capacitors. J Electrochem Soc 152:E24–E33

    CAS  Google Scholar 

  61. Tooming T, Thomberg T, Kurig H et al (2015) High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Power Sources 280:667–677

    CAS  Google Scholar 

  62. Bisquert J (2000) Infuence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185–4192

    CAS  Google Scholar 

  63. Titirici M-M (2013) Sustainable carbon materials from hydrothermal processes. Wiley, Chichester

    Google Scholar 

  64. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  65. Jagiello J, Ania C, Parra JB, Cook C (2015) Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91:330–337

    CAS  Google Scholar 

  66. Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80

    CAS  Google Scholar 

  67. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    CAS  Google Scholar 

  68. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    CAS  Google Scholar 

  69. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    CAS  Google Scholar 

  70. Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45:71–81

    CAS  Google Scholar 

  71. Kurig H, Russina M, Tallo I et al (2016) The suitability of infinite slit-shaped pore model to describe the pores in highly porous carbon materials. Carbon 100:617–624

    CAS  Google Scholar 

  72. Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290

    CAS  PubMed  Google Scholar 

  73. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    CAS  PubMed  Google Scholar 

  74. Thomberg T, Kurig H, Jänes A, Lust E (2011) Mesoporous carbide-derived carbons prepared from different chromium carbides. Microporous Mesoporous Mater 141:88–93

    CAS  Google Scholar 

  75. Li Q-Y, Wang H-Q, Dai Q-F et al (2008) Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ion 179:269–273

    CAS  Google Scholar 

  76. Chmiola J, Yushin G, Dash R, Gogotsi Y (2006) Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources 158:765–772

    CAS  Google Scholar 

  77. Salitra G, Soffer A, Eliad L et al (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 147:2486–2493

    CAS  Google Scholar 

  78. Wei L, Sevilla M, Fuertes AB et al (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361

    CAS  Google Scholar 

  79. Jagiello J (1994) Stable numerical solution of the adsorption integral equation using splines. Langmuir 10:2778–2785

    CAS  Google Scholar 

  80. Jänes A, Kurig H, Romann T, Lust E (2010) Novel doubly charged cation based electrolytes for non-aqueous supercapacitors. Electrochem Commun 12:535–539

    Google Scholar 

Download references

Acknowledgements

This research was supported by the EU through the European Regional Development Fund (Center of Excellence, 2014-2020.4.01.15-0011, TeRa project SLOKT12026T, higher education specialization stipends in smart specialization growth areas 2014-2020.4.02.16-0026) and Institutional Research Grant IUT20–13 and Estonian Research Council Grant PUT1033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Thomberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härmas, M., Palm, R., Thomberg, T. et al. Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors. J Appl Electrochem 50, 15–32 (2020). https://doi.org/10.1007/s10800-019-01364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01364-5

Keywords

Navigation