Skip to main content
Log in

New Si–Cu and Si–Ni anode materials for lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The functioning of the new anode materials in the form of silicene on copper and nickel substrates was tested by the method of molecular dynamics. It is shown that, two-layer silicene, both ideal and with vacancy defects, on Cu (111) and Ni (111) substrates is more preferable for intercalation of lithium than the corresponding material on Ag (111) substrate. In turn, a higher capacity was found for a lithium-filled silicene channel on a nickel substrate than for a corresponding anode on a copper substrate. In addition, local shear stresses in a functioning silicene anode on a Ni (111) substrate are lower than those on a Cu (111) substrate.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24

    CAS  Google Scholar 

  2. Dou F, Shi L, Chen G, Zhang D (2019) Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem Energy Rev 2:149–198. https://doi.org/10.1007/s41918-018-00028-w

    Article  Google Scholar 

  3. Ryu J, Hong D, Lee H-W, Park S (2017) Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res 10(12):3970–4002. https://doi.org/10.1007/s12274-017-1692-2

    Article  CAS  Google Scholar 

  4. Salah M, Murphy P, Hall CJ, Francis C, Kerr R, Fabretto M (2019) Pure silicon thin-film anodes for lithium-ion batteries: a review. J Power Sources 414:48–67. https://doi.org/10.1016/j.jpowsour.2018.12.068

    Article  CAS  Google Scholar 

  5. Luo X, Lang J, Lv S, Li Z (2018) High performance sandwich structured Si thin film anodes with LiPON coating. Front Mater Sci 12(2):147–155. https://doi.org/10.1007/s11706-018-0416-1

    Article  Google Scholar 

  6. Zamani N, Modarresi-Alam AR, Noroozifar M, Javanbakht M (2019) The improved performance of lithium-ion batteries via the novel electron transport catalytic role of polyaniline (PANI) in PANI/Co3O4–CuO raspberry as new anode material. J Appl Electrochem 49(3):327–340. https://doi.org/10.1007/s10800-019-01286-2

    Article  CAS  Google Scholar 

  7. Wang L, Jia J, Wu Y, Niu K (2018) Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries. J Appl Electrochem 48(10):1115–1120. https://doi.org/10.1007/s10800-018-1224-0

    Article  CAS  Google Scholar 

  8. Kim S-J, Moon S-H, Kim M-C, So J-Y, Han S-B, Kwak D-H, Bae W-G, Park K-W (2018) Micro-patterned 3D Si electrodes fabricated using an imprinting process for high-performance lithium-ion batteries. J Appl Electrochem 48(9):1057–1068. https://doi.org/10.1007/s10800-018-1234-y

    Article  CAS  Google Scholar 

  9. Li WG, Xu XB, Liu C, Tekell MC, Ning J, Guo JH, Zhang JC, Fan DL (2017) Ultralight and binder-free all-solid-state flexible supercapacitors for powering wearable strain sensors. Adv Funct Mater 27:1702738. https://doi.org/10.1002/adfm.201702738

    Article  CAS  Google Scholar 

  10. Lu J, Chen Z, Pan F, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev 1:35–53. https://doi.org/10.1007/s41918-018-0001-4

    Article  Google Scholar 

  11. Balogun MS, Zeng YX, Qiu WT, Luo Y, Onasanya A, Olaniyi TK, Tong YX (2016) Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A 4:9844–9849. https://doi.org/10.1039/C6TA02492K

    Article  CAS  Google Scholar 

  12. Song Y, Xu JL, Liu XX (2014) Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J Power Sources 249:48–58. https://doi.org/10.1016/j.jpowsour.2013.10.102

    Article  CAS  Google Scholar 

  13. Galashev AE, Zaikov YuP (2015) Computer simulation of Li+ ion interaction with a graphene sheet. Rus J Phys Chem A 89:2243–2247. https://doi.org/10.1134/S0036024415120122

    Article  CAS  Google Scholar 

  14. Kawahara K, Shirasawa T, Arafune R, Lin C-L, Takahashi T, Kawai M, Takagi N (2014) Determination of atomic positions in silicone on Ag(111) by low-energy electron diffraction. Surf Sci 623:25–28. https://doi.org/10.1016/jsusc2013.12.013

    Article  CAS  Google Scholar 

  15. Mazzone AM (2003) Ag deposited onto the (100) surface in silicon studied by density functional theory and classical molecular dynamics. Eur Phys J B 35:517–524. https://doi.org/10.1140/epjb/e2003-00305-2

    Article  CAS  Google Scholar 

  16. Galashev AY, Ivanichkina KA (2018) Computer study of atomic mechanisms of intercalation/deintercalation of Li ions in a silicene anode on an Ag (111) substrate. J Electrochem Soc 165:A1788–A1796. https://doi.org/10.1149/2.0751809jes

    Article  CAS  Google Scholar 

  17. Galashev AY, Ivanichkina KA (2019) Computer test of a new silicone anode for lithium-ion battery. ChemElectroChem 6:1525–1535. https://doi.org/10.1002/celc.201900119

    Article  CAS  Google Scholar 

  18. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  19. Brostow W, Dussault J-P, Fox BL (1978) Construction of Voronoi polyhedral. J Comput Phys 29:81–92. https://doi.org/10.1016/0021-9991(78)90110-9

    Article  CAS  Google Scholar 

  20. Galashev AE, Elshina LA, Muradymov RV (2016) Molecular dynamic study of the mechanism of formation of 2D carbon nanostructures in a solid Al–C nanocomposite grain. Rus J Phys Chem A 90(12):2444–2448. https://doi.org/10.1134/S0036024416120116

    Article  CAS  Google Scholar 

  21. Galashev AY (2015) Computer study of the removal of Cu from the graphene surface using Ar clusters. Comput Mater Sci 98:123–128. https://doi.org/10.1016/j.commatsci.2014.11.002

    Article  CAS  Google Scholar 

  22. Galashev AY (2013) Atomistic simulations of methane interactions with an atmospheric moisture. J Chem Phys 139:124303. https://doi.org/10.1063/1.4821192

    Article  CAS  PubMed  Google Scholar 

  23. Chavez-Castillo MR, Rodrıguez-Mezab MA, Meza-Montes L (2015) Size, vacancy and temperature effects on Young’s modulus of silicene nanoribbons. RSC Adv 5:96052–96061. https://doi.org/10.1039/C5RA15312C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (the Grant Number 16-13-00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Galashev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.Y., Zaikov, Y.P. New Si–Cu and Si–Ni anode materials for lithium-ion batteries. J Appl Electrochem 49, 1027–1034 (2019). https://doi.org/10.1007/s10800-019-01344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01344-9

Keywords

Navigation