Skip to main content
Log in

High performance sandwich structured Si thin film anodes with LiPON coating

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3 (1): 31–35

    Article  Google Scholar 

  2. Zhou X S, Yu L, Yu X Y, et al. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Advanced Energy Materials, 2016, 6(22): 1601177

    Article  Google Scholar 

  3. Zhou X, Yu L, Lou X W. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8(15): 8384–8389

    Article  Google Scholar 

  4. Mo R, Tung S O, Lei Z, et al. Pushing the limits: 3D layer-by-layer assembled composites for cathodes with 160C discharge rates. ACS Nano, 2015, 9(5): 5009–5017

    Article  Google Scholar 

  5. Zhou X, Dai Z, Liu S, et al. Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Advanced Materials, 2014, 26(23): 3943–3949

    Article  Google Scholar 

  6. Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Letters, 2012, 12(5): 2318–2323

    Article  Google Scholar 

  7. Chang J, Huang X, Zhou G, et al. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 2014, 26(5): 758–764

    Article  Google Scholar 

  8. Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414–429

    Article  Google Scholar 

  9. Kim H, Seo M, Park M H, et al. A critical size of silicon nanoanodes for lithium rechargeable batteries. Angewandte Chemie International Edition, 2010, 49(12): 2146–2149

    Article  Google Scholar 

  10. Chen J, Yang L, Rousidan S, et al. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale, 2013, 5(21): 10623–10628

    Article  Google Scholar 

  11. Jing S, Jiang H, Hu Y, et al. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale, 2014, 6(23): 14441–14445

    Article  Google Scholar 

  12. Wang H, Song H, Lin Z, et al. Highly cross-linked Cu/a-Si core–shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8(5): 2613–2619

    Article  Google Scholar 

  13. Hao Q, Zhao D, Duan H, et al. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Liion batteries. Nanoscale, 2015, 7(12): 5320–5327

    Article  Google Scholar 

  14. Kim H, Huang X K, Wen Z H, et al. Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1947–1952

    Article  Google Scholar 

  15. Liu L, Lyu J, Li T, et al. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. Nanoscale, 2016, 8(2): 701–722

    Article  Google Scholar 

  16. Zhao C, Luo X, Chen C, et al. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8(18): 9511–9516

    Article  Google Scholar 

  17. Yu C J, Li X, Ma T, et al. Silicon thin films as anodes for highperformance lithium-ion batteries with effective stress relaxation. Advanced Energy Materials, 2012, 2(1): 68–73

    Article  Google Scholar 

  18. Wu H, Chan G, Choi J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315

    Article  Google Scholar 

  19. Xiao X, Lu P, Ahn D. Ultrathin multifunctional oxide coatings for lithium ion batteries. Advanced Materials, 2011, 23(34): 3911–3915

    Article  Google Scholar 

  20. Guo S, Li H, Bai H, et al. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources, 2014, 248: 1141–1148

    Article  Google Scholar 

  21. Sun F, Huang K, Qi X, et al. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a highperformance lithium-ion battery anode. Nanoscale, 2013, 5(18): 8586–8592

    Article  Google Scholar 

  22. Cras F L, Pecquenard B, Dubois V, et al. All-solid-state lithiumion microbatteries using silicon nanofilm anodes: high performance and memory effect. Advanced Energy Materials, 2015, 5 (19): 1501061

    Article  Google Scholar 

  23. Li J, Dudney N J, Nanda J, et al. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Applied Materials & Interfaces, 2014, 6(13): 10083–10088

    Article  Google Scholar 

  24. Liao J, Li Z, Wang G, et al. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature. Physical Chemistry Chemical Physics, 2016, 18(6): 4835–4841

    Article  Google Scholar 

  25. Wang G, Li Z, Li M, et al. Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays. Physical Chemistry Chemical Physics, 2015, 17(47): 31822–31829

    Article  Google Scholar 

  26. Lv S, Li Z, Chen C, et al. Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies. ACS Applied Materials & Interfaces, 2015, 7(24): 13564–13568

    Article  Google Scholar 

  27. Yang Y, Wang Z X, Zhou R, et al. Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. Materials Letters, 2016, 184: 65–68

    Article  Google Scholar 

  28. Liu Y X, Si L, Du Y C, et al. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. The Journal of Physical Chemistry C, 2015, 119(49): 27316–27321

    Article  Google Scholar 

  29. Ruffo R, Hong S S, Chan C K, et al. Impedance analysis of silicon nanowire lithium ion battery anodes. The Journal of Physical Chemistry C, 2009, 113(26): 11390–11398

    Article  Google Scholar 

  30. Herbert E G, Tenhaeff W E, Dudney N J, et al. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011, 520(1): 413–418

    Article  Google Scholar 

  31. Fedorchenko A I, Wang A B, Cheng H H. Thickness dependence of nanofilm elastic modulus. Applied Physics Letters, 2009, 94 (15): 152111

    Article  Google Scholar 

  32. Choi J Y, Lee D J, Lee Y M, et al. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes. Advanced Functional Materials, 2013, 23(17): 2108–2114

    Article  Google Scholar 

  33. Cho J H, Picraux S T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Letters, 2013, 13(11): 5740–5747

    Article  Google Scholar 

  34. Fu K, Xue L G, Yildiz O, et al. Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy, 2013, 2(5): 976–986

    Article  Google Scholar 

  35. Cui L F, Hu L, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 2010, 4(7): 3671–3678

    Article  Google Scholar 

  36. Zhu Y, Liu W, Zhang X, et al. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir, 2013, 29(2): 744–749

    Article  Google Scholar 

  37. Wu H, Zheng G, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Letters, 2012, 12(2): 904–909

    Article  Google Scholar 

  38. Liu B, Soares P, Checkles C, et al. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the financial support of the National Natural Science Foundation of China (under Grant No. 61176003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengcao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Lang, J., Lv, S. et al. High performance sandwich structured Si thin film anodes with LiPON coating. Front. Mater. Sci. 12, 147–155 (2018). https://doi.org/10.1007/s11706-018-0416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-018-0416-1

Keywords

Navigation