Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 5, pp 475–484 | Cite as

Co-sensitized TiO2 electrodes with different quantum dots for enhanced hydrogen evolution in photoelectrochemical cells

  • Andrea Cerdán-Pasarán
  • Tzarara López-LukeEmail author
  • Isaac Zarazúa
  • Elder De la Rosa
  • Rosalba Fuentes-Ramírez
  • K. C. Sanal
  • Alejandro Alatorre-Ordaz
Research Article
  • 101 Downloads
Part of the following topical collections:
  1. Solar Cells

Abstract

A comparative study of hydrogen evolution in devices based on cadmium chalcogenides quantum dots (CdS, CdSe and CdTe) and its combinations, sensitizing TiO2 was carried out. A maximum photocurrent of 2.7 mA cm−2 at 0 V bias, and a solar-to-hydrogen (STH) conversion efficiency of 0.9%, was obtained with CdSe QDs due to its wide absorption range. The co-sensitized device with CdS–CdSe QDs showed a higher photocurrent of 3.9 mA cm−2 with an STH of 1.2%. The improvement in hydrogen generation for electrodes sensitized with CdS in combination with CdSe or CdTe QDs, was attributed to the increased light absorption and appropriate band alignment for the enhanced charge transport.

Graphical abstract

Keywords

Photoelectrochemical hydrogen generation Colloidal quantum dots Cadmium chalcogenides 

Notes

Acknowledgements

We acknowledge financial support to CONACYT through Grant 259192 and CEMIE-Solar (207450) consortium projects P27 and P28. A. Cerdán-Pasarán acknowledges to CONACYT for the Doctoral fellowship. We thank to Christian Albor for technical support.

References

  1. 1.
    González-Pedro V, Zarazua I, Barea EM et al (2014) Panchromatic solar-to-H2 conversion by a hybrid quantum dots–dye dual absorber tandem device. J Phys Chem C 118:891–895.  https://doi.org/10.1021/jp4109893 CrossRefGoogle Scholar
  2. 2.
    Turner J, Sverdrup G, Mann MK et al (2008) Renewable hydrogen production. Int J Energy Res 32:379–407.  https://doi.org/10.1002/er.1372 CrossRefGoogle Scholar
  3. 3.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535.  https://doi.org/10.1039/C3CS60378D CrossRefGoogle Scholar
  4. 4.
    Khan SUM (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245.  https://doi.org/10.1126/science.1075035 CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  6. 6.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425.  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  7. 7.
    Sun J, Zhong DK, Gamelin DR (2010) Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci 3:1252.  https://doi.org/10.1039/c0ee00030b CrossRefGoogle Scholar
  8. 8.
    Gonell F, Haro M, Sánchez RS et al (2014) Photon up-conversion with lanthanide-doped oxide particles for solar H2 generation. J Phys Chem C 118:11279–11284.  https://doi.org/10.1021/jp503743e CrossRefGoogle Scholar
  9. 9.
    Han W, Ren L, Qi X et al (2014) Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl Surf Sci 299:12–18.  https://doi.org/10.1016/j.apsusc.2014.01.170 CrossRefGoogle Scholar
  10. 10.
    Pihosh Y, Turkevych I, Mawatari K et al (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141.  https://doi.org/10.1038/srep11141 CrossRefGoogle Scholar
  11. 11.
    Li X, Wang Z, Zhang Z et al (2015) Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting. Sci Rep 5:9130.  https://doi.org/10.1038/srep09130 CrossRefGoogle Scholar
  12. 12.
    Haro M, Abargues R, Herraiz-Cardona I et al (2014) Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochim Acta 144:64–70.  https://doi.org/10.1016/j.electacta.2014.07.146 CrossRefGoogle Scholar
  13. 13.
    Simon T, Bouchonville N, Berr MJ et al (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni–decorated CdS nanorods. Nat Mater 13:1013–1018.  https://doi.org/10.1038/nmat4049 CrossRefGoogle Scholar
  14. 14.
    Momeni MM, Ghayeb Y, Shafiei M (2017) Preparation and characterization of CrFeWTiO2 photoanodes and their photoelectrochemical activities for water splitting. Dalton Trans 46:12527–12536.  https://doi.org/10.1039/c7dt01596h CrossRefGoogle Scholar
  15. 15.
    Sharifi T, Ghayeb Y, Mohammadi T, Momeni MM (2018) Enhanced photoelectrochemical water splitting of CrTiO2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au. Dalton Trans 47:11593–11604.  https://doi.org/10.1039/c8dt02383b CrossRefGoogle Scholar
  16. 16.
    Momeni MM, Mozafari AA (2016) The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films. J Mater Sci Mater Electron 27:10658–10666.  https://doi.org/10.1007/s10854-016-5163-4 CrossRefGoogle Scholar
  17. 17.
    Momeni MM, Ghayeb Y, Menati M (2018) Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J Mater Sci Mater Electron 29:4136–4146.  https://doi.org/10.1007/s10854-017-8358-4 CrossRefGoogle Scholar
  18. 18.
    Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45:557–566.  https://doi.org/10.1007/s10800-015-0836-x CrossRefGoogle Scholar
  19. 19.
    Momeni MM, Ghayeb Y, Mozafari AA (2016) Optical and photo catalytic characteristics of Ag2S/TiO2 nanocomposite films prepared by electrochemical anodizing and SILAR approach. J Mater Sci Mater Electron 27:11201–11210.  https://doi.org/10.1007/s10854-016-5240-8 CrossRefGoogle Scholar
  20. 20.
    Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe-TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48.  https://doi.org/10.1016/j.jelechem.2015.05.035 CrossRefGoogle Scholar
  21. 21.
    Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400.  https://doi.org/10.1016/j.jallcom.2015.02.137 CrossRefGoogle Scholar
  22. 22.
    Momeni MM, Ghayeb Y, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem 739:149–155.  https://doi.org/10.1016/j.jelechem.2014.12.030 CrossRefGoogle Scholar
  23. 23.
    Momeni MM, Ghayeb Y, Ezati F (2018) Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J Colloid Interface Sci 514:70–82.  https://doi.org/10.1016/j.jcis.2017.12.021 CrossRefGoogle Scholar
  24. 24.
    Trevisan R, Rodenas P, Gonzalez-Pedro V et al (2013) Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J Phys Chem Lett 4:141–146.  https://doi.org/10.1021/jz301890m CrossRefGoogle Scholar
  25. 25.
    Tanaka K, Jin-nouchi Y, Fujishima M, Tada H (2015) Lead selenide–titanium dioxide heteronanojunction formation by photocatalytic current doubling-induced two-step photodeposition technique. J Colloid Interface Sci 457:248–253.  https://doi.org/10.1016/j.jcis.2015.03.008 CrossRefGoogle Scholar
  26. 26.
    Yu Z, Li F, Sun L (2015) Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ Sci 8:760–775.  https://doi.org/10.1039/C4EE03565H CrossRefGoogle Scholar
  27. 27.
    Jang JS, Li W, Oh SH, Lee JS (2006) Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem Phys Lett 425:278–282.  https://doi.org/10.1016/j.cplett.2006.05.031 CrossRefGoogle Scholar
  28. 28.
    Seabold J, Shankar K, Wilke RHT et al (2008) Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater 20:5266–5273.  https://doi.org/10.1021/cm8010666 CrossRefGoogle Scholar
  29. 29.
    Sreedhar G, Sivanantham A, Venkateshwaran S et al (2015) Enhanced photoelectrochemical performance of CdSe quantum dot sensitized SrTiO3. J Mater Chem A 3:13476–13482.  https://doi.org/10.1039/C5TA00304K CrossRefGoogle Scholar
  30. 30.
    Cui W, Ma S, Liu L, Liang Y (2012) PbS-sensitized K2Ti4O9 composite: preparation and photocatalytic properties for hydrogen evolution under visible light irradiation. Chem Eng J 204–206:1–7.  https://doi.org/10.1016/j.cej.2012.07.075 CrossRefGoogle Scholar
  31. 31.
    Chen HM, Chen CK, Chang Y-C et al (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 122:6102–6105.  https://doi.org/10.1002/ange.201001827 CrossRefGoogle Scholar
  32. 32.
    Liu L, Hensel J, Fitzmorris RC et al (2010) Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures. J Phys Chem Lett 1:155–160.  https://doi.org/10.1021/jz900122u CrossRefGoogle Scholar
  33. 33.
    Jin-Nouchi Y, Hattori T, Sumida Y et al (2010) PbS quantum dot-sensitized photoelectrochemical cell for hydrogen production from water under illumination of simulated sunlight. ChemPhysChem 11:3592–3595.  https://doi.org/10.1002/cphc.201000593 CrossRefGoogle Scholar
  34. 34.
    Vaneski A, Schneider J, Susha AS, Rogach AL (2014) Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J Photochem Photobiol C 19:52–61.  https://doi.org/10.1016/j.jphotochemrev.2013.12.001 CrossRefGoogle Scholar
  35. 35.
    Peng X (2009) An essay on synthetic chemistry of colloidal nanocrystals. Nano Res 2:425–447.  https://doi.org/10.1007/s12274-009-9047-2 CrossRefGoogle Scholar
  36. 36.
    Gür TM, Bent SF, Prinz FB (2014) Nanostructuring materials for solar-to-hydrogen conversion. J Phys Chem C 118:21301–21315.  https://doi.org/10.1021/jp500966u CrossRefGoogle Scholar
  37. 37.
    Shin K, Yoo J-B, Park JH (2013) Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays. J Power Sources 225:263–268.  https://doi.org/10.1016/j.jpowsour.2012.10.036 CrossRefGoogle Scholar
  38. 38.
    Wang G, Yang X, Qian F et al (2010) Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088–1092.  https://doi.org/10.1021/nl100250z CrossRefGoogle Scholar
  39. 39.
    Kim DH, Han HS, Cho IS et al (2015) CdS-sensitized 1-D single-crystalline anatase TiO2 nanowire arrays for photoelectrochemical hydrogen production. Int J Hydrogen Energy 40:863–869.  https://doi.org/10.1016/j.ijhydene.2014.09.174 CrossRefGoogle Scholar
  40. 40.
    Hensel J, Wang G, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483.  https://doi.org/10.1021/nl903217w CrossRefGoogle Scholar
  41. 41.
    Berr MJ, Wagner P, Fischbach S et al (2012) Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl Phys Lett 100:223903.  https://doi.org/10.1063/1.4723575 CrossRefGoogle Scholar
  42. 42.
    Seol M, Jang J, Cho S et al (2013) Highly efficient and stable cadmium chalcogenide quantum Dot/ZnO nanowires for photoelectrochemical hydrogen generation. Chem Mater 25:184–189.  https://doi.org/10.1021/cm303206s CrossRefGoogle Scholar
  43. 43.
    Kim H, Seol M, Lee J, Yong K (2011) Highly efficient photoelectrochemical hydrogen generation using hierarchical ZnO/WOx nanowires cosensitized with CdSe/CdS. J Phys Chem C 115:25429–25436.  https://doi.org/10.1021/jp2093115 CrossRefGoogle Scholar
  44. 44.
    Ali Z, Shakir I, Kang DJ (2014) Highly efficient photoelectrochemical response by sea-urchin shaped ZnO/TiO2 nano/micro hybrid heterostructures co-sensitized with CdS/CdSe. J Mater Chem A 2:6474.  https://doi.org/10.1039/c3ta15439d CrossRefGoogle Scholar
  45. 45.
    Wang H, Zhu W, Chong B, Qin K (2014) Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure. Int J Hydrog Energy 39:90–99.  https://doi.org/10.1016/j.ijhydene.2013.10.048 CrossRefGoogle Scholar
  46. 46.
    Gao X-F, Sun W-T, Ai G, Peng L-M (2010) Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Appl Phys Lett 96:153104.  https://doi.org/10.1063/1.3386525 CrossRefGoogle Scholar
  47. 47.
    Rodenas P, Song T, Sudhagar P et al (2013) Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater 3:176–182.  https://doi.org/10.1002/aenm.201200255 CrossRefGoogle Scholar
  48. 48.
    Zeng T-W, Liu S, Hsu F-C et al (2010) Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device. Opt Express 18:A357.  https://doi.org/10.1364/OE.18.00A357 CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Yan Z, Liu J, Wei A (2013) Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition. Mater Sci Semicond Process 16:1592–1598.  https://doi.org/10.1016/j.mssp.2013.04.027 CrossRefGoogle Scholar
  50. 50.
    Emin S, Singh SP, Han L et al (2011) Colloidal quantum dot solar cells. Sol Energy 85:1264–1282.  https://doi.org/10.1016/j.solener.2011.02.005 CrossRefGoogle Scholar
  51. 51.
    De La Fuente MS, Sánchez RS, González-Pedro V et al (2013) Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J Phys Chem Lett 4:1519–1525.  https://doi.org/10.1021/jz400626r CrossRefGoogle Scholar
  52. 52.
    Cerdán-Pasarán A, Esparza D, Zarazúa I et al (2016) Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added. J Appl Electrochem 46:975–985.  https://doi.org/10.1007/s10800-016-0972-y CrossRefGoogle Scholar
  53. 53.
    Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353CrossRefGoogle Scholar
  54. 54.
    Cerdán A, López-Luke T, Esparza D et al (2015) Photovoltaic properties of multilayered quantum dot/quantum rod-sensitized TiO2 solar cells fabricated by SILAR and electrophoresis. Phys Chem Chem Phys.  https://doi.org/10.1039/C5CP02541A Google Scholar
  55. 55.
    Esparza D, Zarazúa I, López-Luke T et al (2015) Effect of different sensitization technique on the photoconversion efficiency of CdS quantum dot and CdSe quantum rod sensitized TiO2 solar cells. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.5b01525 Google Scholar
  56. 56.
    Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91:023116.  https://doi.org/10.1063/1.2757130 CrossRefGoogle Scholar
  57. 57.
    Giménez S, Lana-Villarreal T, Gómez R et al (2010) Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties. J Appl Phys 108:064310.  https://doi.org/10.1063/1.3477194 CrossRefGoogle Scholar
  58. 58.
    Jung SW, Kim JH, Kim H et al (2012) ZnS overlayer on in situ chemical bath deposited CdS quantum dot-assembled TiO2 films for quantum dot-sensitized solar cells. Curr Appl Phys 12:1459–1464.  https://doi.org/10.1016/j.cap.2012.04.012 CrossRefGoogle Scholar
  59. 59.
    Lee H, Wang M, Chen P et al (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227.  https://doi.org/10.1021/nl902438d CrossRefGoogle Scholar
  60. 60.
    Liu Y, Li Z, Yu L, Sun S (2015) Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. J Nanoparticle Res 17:132.  https://doi.org/10.1007/s11051-015-2940-6 CrossRefGoogle Scholar
  61. 61.
    Ai G, Mo R, Xu H et al (2015) Vertically aligned TiO2/(CdS, CdTe, CdSTe) core/shell nanowire array for photoelectrochemical hydrogen generation. J Power Sources 280:5–11.  https://doi.org/10.1016/j.jpowsour.2015.01.071 CrossRefGoogle Scholar
  62. 62.
    Luo J, Karuturi SK, Liu L et al (2012) Homogeneous photosensitization of complex TiO2 nanostructures for efficient solar energy conversion. Sci Rep 2:451.  https://doi.org/10.1038/srep00451 CrossRefGoogle Scholar
  63. 63.
    Seol M, Kim H, Kim W, Yong K (2010) Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem Commun 12:1416–1418.  https://doi.org/10.1016/j.elecom.2010.07.035 CrossRefGoogle Scholar
  64. 64.
    Yue D, Qian X, Zhang Z et al (2016) CdTe/CdS Core/shell quantum dots cocatalyzed by sulfur tolerant [Mo3S13]2-nanoclusters for efficient visible-light-driven hydrogen evolution. ACS Sustain Chem Eng 4:6653–6658.  https://doi.org/10.1021/acssuschemeng.6b01520 CrossRefGoogle Scholar
  65. 65.
    Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791.  https://doi.org/10.1021/cm802282t CrossRefGoogle Scholar
  66. 66.
    Li Z, Luo W, Zhang M et al (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370.  https://doi.org/10.1039/C2EE22618A CrossRefGoogle Scholar
  67. 67.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570.  https://doi.org/10.1021/cr1001645 CrossRefGoogle Scholar
  68. 68.
    Cendula P, Tilley SD, Gimenez S et al (2014) Calculation of the energy band diagram of a photoelectrochemical water splitting cell. J Phys Chem C 118:29599–29607.  https://doi.org/10.1021/jp509719d CrossRefGoogle Scholar
  69. 69.
    Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685.  https://doi.org/10.1021/ed084p685 CrossRefGoogle Scholar
  70. 70.
    Mora-Seró I, Bisquert J (2012) Impedance characterization of quantum dot sensitized solar cells. In: Frontiers of Quantum Dot Solar Cells. CMC Publishing Co., Ltd, Japan, pp 162–175Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Andrea Cerdán-Pasarán
    • 1
  • Tzarara López-Luke
    • 2
    Email author
  • Isaac Zarazúa
    • 3
  • Elder De la Rosa
    • 5
  • Rosalba Fuentes-Ramírez
    • 4
  • K. C. Sanal
    • 1
  • Alejandro Alatorre-Ordaz
    • 4
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Departamento de Ciencias Exactas y Tecnología, Lagos de MorenoUniversidad de Guadalajara, Centro Universitario de Los LagosJaliscoMexico
  4. 4.División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico
  5. 5.Universidad De La Salle BajioLeónMexico

Personalised recommendations