Skip to main content
Log in

Poly(aniline-co-o-anisidine)/graphene oxide Au nanocomposites for dopamine electrochemical sensing application

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We describe here the manufacture of poly(aniline-co-o-anisidine)/graphene oxide nanocomposites, with the common abbreviation [PANI-co-PoAN/GO1−5], by the well-known in situ oxidative polymerization method with ultrasonic assistance. FE-SEM and TEM micrographs were utilized to examine the morphological characteristics of the composite materials. Moreover, FT-IR, XRD, TGA, and electrical conductivity measurements were used to investigate their complete performance. All the composites had almost equal final copolymer decomposition temperatures, which were in the range of 609.3–663.8 °C. Our essential objective is to study the electro selective application using gold nanoparticles (AuNPs) as a coating. Dopamine (DA) electrochemical sensor based on [AuNPs/PANI-co-PoAN/GO] nanocomposite covalently modified gold electrode was modified by an electroabsorption technique. The electrochemical behavior of the modified electrode towards the oxidation of DA was studied by square wave voltammetry (SWV) and cyclic voltammetry (CV) in pH 5.0 phosphate buffer solution. The sensor developed a current response to the oxidation of DA. Using SWV, the electrochemical sensor gave a linear relationship to DA in the concentration range of 5–100 µM with a limit of detection of 0.0334 µM. The modified electrode was highly stable, sensitive, and selective.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ben AM, Bounab L, Choukairi M et al (2018) Selective and sensitive detection of dopamine in the presence of ascorbic acid and uric acid at a Sonogel-Carbon l-Histidine modified electrode. J Mater Environ Sci 9:66–76

    Google Scholar 

  2. Tukimin N, Abdullah J, Sulaiman Y (2018) Review—electrochemical detection of uric acid. Dopamine Ascorbic Acid 165:258–267. https://doi.org/10.1149/2.0201807jes

    Article  CAS  Google Scholar 

  3. Heien MLAV, Khan AS, Ariansen JL et al (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023–10028

    Article  CAS  PubMed  Google Scholar 

  4. Li W, Liu Z, Lin H et al (2010) Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive. DNAzyme Strategy 82:4407–4413

    Google Scholar 

  5. Park J, Myung S, Kim I et al (2013) Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol Pharm Bull 36:252–258

    Article  CAS  PubMed  Google Scholar 

  6. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr 847:88–94. https://doi.org/10.1016/j.jchromb.2006.09.032

    Article  CAS  Google Scholar 

  7. Qian C, Zhu S, Feng P et al (2015) Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of Zebra fish larvae. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b04987

    Article  PubMed  Google Scholar 

  8. Kumbhat S, Shankaran DR, Kim SJ et al (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23:421–427. https://doi.org/10.1016/j.bios.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  9. Krishna VM, Somanathan T, Manikandan E et al (2018) Neurotransmitter dopamine enhanced sensing detection using fibre-like carbon nanotubes by chemical vapor deposition technique. J Nanosci Nanotechnol 18:5380–5389. https://doi.org/10.1166/jnn.2018.15425

    Article  CAS  PubMed  Google Scholar 

  10. Yin ZZ, Cheng SW, Xu L, Bin et al (2018) Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes. Biosens Bioelectron 100:565–570. https://doi.org/10.1016/j.bios.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  11. Cogal S (2018) Electrochemical determination of dopamine using graphene oxide-modified glassy carbon electrode electrochemical determination of dopamine using a. Anal Lett. https://doi.org/10.1080/00032719.2017.1387791

    Article  Google Scholar 

  12. March G, Dung T, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5:241–275. https://doi.org/10.3390/bios5020241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan D, Wu S, Tian S, Zhou J, Ju Y, Ma C, Shi J (2014) Detection of dopamine on a poly(metanilic acid) decorated two-dimensional gold cavity array electrode. RSC Adv 4:49560–49568. https://doi.org/10.1039/C4RA07649D

    Article  CAS  Google Scholar 

  14. Yuhong S, Jia P, Bai Y, Liao S, Wang S, Zheng Z (2013) A simple and novel strategy for the simultaneous determination of dopamine, aceelectrodetamidophenol and tryptophan based on poly(new coccine) film modified carbon paste. Anal Methods 5:5737–5745. https://doi.org/10.1039/c3ay41058g

    Article  CAS  Google Scholar 

  15. Ding A, Wang B, Zheng J et al (2018) Sensitive dopamine sensor based on three dimensional and macroporous carbon aerogel microelectrode. Int J Electrochem Sci 13:4379–4389. https://doi.org/10.20964/2018.05.43

    Article  CAS  Google Scholar 

  16. Wang X, Lu M, Wang H et al (2015) Three-dimensional graphene aerogels—mesoporous silica frameworks for superior adsorption capability of phenols. Sep Purif Technol 153:7–13. https://doi.org/10.1016/j.seppur.2015.08.030

    Article  CAS  Google Scholar 

  17. Li J, Wang Y, Sun Y et al (2016) A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite fi lm for sensitive electrochemical detection of dopamine. RSC Adv 7:2315–2322. https://doi.org/10.1039/C6RA25627A

    Article  Google Scholar 

  18. Wang W, Cheng Y, Yan L et al (2015) Analytical methods highly sensitive electrochemical sensor for dopamine with a double-stranded. Anal Methods 7:1878–1883. https://doi.org/10.1039/C4AY03008G

    Article  CAS  Google Scholar 

  19. Baig N, Kawde A (2016) RSC Advances electrode decorated with alternating layers of Au NPs for the simultaneous detection of dopamine and uric acid in human urine. RSC Adv 6:80756–80765. https://doi.org/10.1039/C6RA10055D

    Article  CAS  Google Scholar 

  20. Pandey S, Annapoorni S, Malhotra BD (1993) Synthesis and characterization of poly(ani1ine-co-o-anisidine): a processable conducting copolymer. Macromolecules 26:3190–3193

    Article  CAS  Google Scholar 

  21. Wang J, Keene FR (1996) Mechanism of mediation of the electrochemical oxidation of K4Fe(CN)6 at poly-[tris(3-{ω-[4-(2,2′-bipyridyl)] alkyl}-thiophene)iron(II)]-film modified electrodes in aqueous solutions. Electrochim Acta 41:2563–2569

    Article  CAS  Google Scholar 

  22. Zhuang Z, Li J, Xu R, Xiao D (2011) Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrode. Int J Electrochem Sci 6:2149–2161

    CAS  Google Scholar 

  23. Kulandainathan M, Gorlea D (2016) Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue) composite modified electrode. RSC Adv 6:19982–19991. https://doi.org/10.1039/C5RA25541D

    Article  CAS  Google Scholar 

  24. He X, Wu Y, Cui L, Liu Y, Lv G, Pu T, Liu D (2013) A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode. Analyst 138:1204–1211. https://doi.org/10.1039/C2AN36349F

    Article  PubMed  Google Scholar 

  25. Li F, Yang L, Zhaoa C, Du Z (2011) Electroactive gold nanoparticles/polyaniline/polydopamine hybrid composite in neutral solution as high-performance sensing platform. Anal Methods 3:1601–1606. https://doi.org/10.1039/C1AY05126A

    Article  CAS  Google Scholar 

  26. Shi G, Yu X, Shenga K (2014) A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine. Analyst 139:4525–4531. https://doi.org/10.1039/C4AN00604F

    Article  PubMed  Google Scholar 

  27. Pruneanua S, Biris A, Pogaceana F, Socacia C, Coros M, Rosua M, Watanabe F, Biris A (2015) The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta 154:197–204. https://doi.org/10.1016/j.electacta.2014.12.046

    Article  CAS  Google Scholar 

  28. Srivastava R, Kaur B, Satpatib B (2015) Synthesis of NiCo2O4/Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. New J Chem 39:1115–1124. https://doi.org/10.1039/C4NJ01360C

    Article  CAS  Google Scholar 

  29. Yang X, Liu X, Zhua H (2014) An electrochemical sensor for dopamine based on poly(ophenylenediamine) functionalized with electrochemically reduced graphene oxide. RSC Adv 4:3706–3712. https://doi.org/10.1039/C3RA45234D

    Article  Google Scholar 

  30. Recco L, Crulhas B, Parraa J, Pedrosa V (2016) A new strategy for detecting dopamine in human serum using polymer brushes reinforced with carbon nanotubes. RSC Adv 6:47134–47137. https://doi.org/10.1039/C6RA05151K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article contains the results and findings of a research project funded by King Abdulaziz City for Science and Technology (KACST) Grant No. PS-38-27.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aisha A. Ganash or Mahmoud A. Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganash, A.A., Alqarni, S.A. & Hussein, M.A. Poly(aniline-co-o-anisidine)/graphene oxide Au nanocomposites for dopamine electrochemical sensing application. J Appl Electrochem 49, 179–194 (2019). https://doi.org/10.1007/s10800-018-1260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1260-9

Keywords

Navigation