Skip to main content
Log in

Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Birnessite MnO2, a hydrated layered manganese dioxide with a layered structure, is a promising candidate for sodium-ion batteries because of a significant interlayer distance for the reversible insertion of sodium ions. This work proposes to improve the electrochemical performance of layered manganese dioxide by metal cation doping. Nickel-doped layered MnO2 (0.05–0.15 wt%) prepared by a sol–gel method using a chelate agent of fumaric acid showed a gradual increase of interlayer distance with an increase of Ni-doping amount. Moreover, ex situ XRD results during the first cycle confirmed a stabilization of the layered structure during the sodium insertion. During the charge–discharge test, the initial capacity of 15% Ni layered MnO2 was 140 mAh/g, with small capacity fade over 20 cycles.

Graphical Abstract

Layered structure of MnO2 and sodium diffusion along [001] and [010] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chabre Y, Pannetier J (1995) Structure and electrochemical properties of the proton/gamma-MnO2 system. Prog Solid State Chem 23:1–130

    Article  CAS  Google Scholar 

  2. Euler K-J (1982) Battery manganese dioxide-a survey of its history and etymology. J Power Sources 8:133–141

    Article  CAS  Google Scholar 

  3. Bach S, Henry M, Baffier N, Livage J (1990) Sol-gel synthesis of manganese oxide. J Solid State Chem 88:325–333

    Article  CAS  Google Scholar 

  4. Pereira-Ramos JP, Baddour-Hadjean R, Bach S, Baffier N (1992) Electrochemical and structural characteristics of some lithium intercalation materials synthesized via a sol-gel process: V2O5 and manganese dioxides-based compounds. Solid State Ion 53–56:701–709

    Article  Google Scholar 

  5. Franger S, Bach S, Fracy J et al (2002) Synthesis, structural and electrochemical characterization of the sol-gel birnessite MnO1.84·0.6H2O. J Power Sources 109:262–275

    Article  CAS  Google Scholar 

  6. Ibarra Palos A, Anne M, Strobel P (2001) Electrochemical lithium intercalation in disordered manganese oxides. Solid State Ion 138:203–212

    Article  Google Scholar 

  7. Mendiboure A, Delmas C, Hagenmuller P (1985) Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem 57:323–331

    Article  CAS  Google Scholar 

  8. Su D, Wang C, Ahn H, Wang G (2013) Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem Eur J 19:10884–10889

    Article  CAS  PubMed  Google Scholar 

  9. Sauvage F, Laffont L, Tarascon J-M, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294

    Article  CAS  PubMed  Google Scholar 

  10. Kim DJ, Rubha Ponraj AG, Kannan et al (2013) Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J Power Sources 244:758–763

    Article  CAS  Google Scholar 

  11. Ruffo R, Fathi R, Kim DJ et al (2013) Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta 108:575–582

    Article  CAS  Google Scholar 

  12. Bach S, Pereira-Ramos JP, Baffier N (1993) Electrochemical sodium insertion into the sol-gel birnessite manganese dioxide. Electrochim Acta 38:1695–1698

    Article  CAS  Google Scholar 

  13. Renuka R, Ramamurthy S (2000) An investigation on layered birnessite type manganese oxides for battery applications. J Power Sources 87:144–152

    Article  CAS  Google Scholar 

  14. Le Goff P, Baffier N, Bach S et al (1993) Structural and electrochemical characteristics of a lamellar sodium manganese oxide synthesized via a sol-gel process. Solid State Ion 61:309–315

    Article  Google Scholar 

  15. Franger S, Bach S, Farcy J et al (2003) An electrochemical impedance spectroscopy study of new lithiated manganese oxides for 3 V application in rechargeable Li-batteries. Electrochim Acta 48:891–900

    Article  CAS  Google Scholar 

  16. Bach S, Pereira-Ramos JP, Baffier N, Messina R (1991) Birnessite manganese dioxide synthesized via a sol–gel process: a new rechargeable cathodic material for lithium batteries. Electrochim Acta 36:1595–1603

    Article  CAS  Google Scholar 

  17. Julien C, Massot M, Baddour-Hadjean R et al (2003) Raman spectra of birnessite manganese dioxides. Solid State Ion 159:345–356

    Article  CAS  Google Scholar 

  18. Julien C, Massot M, Rangan S et al (2002) Study of structural defects in gamma-MnO2 by Raman spectroscopy. J Raman Spectrosc 33:223–228

    Article  CAS  Google Scholar 

  19. Nam KW, Kim S, Yang E et al (2015) Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem Mater 27:3721–3725

    Article  CAS  Google Scholar 

  20. Ogata A, Komaba S, Baddour-Hadjean R et al (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53:3084–3093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Vietnam National University of Ho Chi Minh City through grant C2016-18-03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Thanh Nguyen Huynh or My Loan Phung Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.H., Huynh, L.T.N., Nguyen, T.H. et al. Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries. J Appl Electrochem 48, 793–800 (2018). https://doi.org/10.1007/s10800-018-1196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1196-0

Keywords

Navigation