Skip to main content
Log in

Effects of the Mn/Ni ratio on the battery performance of layered Na-Ni-Mn oxide cathode materials in sodium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of efficient sodium-ion batteries is essential to overcome the issue of limited lithium sources for preparing lithium-ion batteries. Layered Mn-based cathode materials have significant application potential because of their simple structure and high specific capacities. Serious voltage attenuation and phase transition are the prominent problems of layered manganese-sodium ion batteries. To eliminate these issues, in this study, we investigated the effects of different Mn/Ni ratios in Na-Ni-Mn cathode materials on their structural stability and electrochemical performances. Na0.8MnO2 (NNM-8010), Na0.8Ni0.1Mn0.9O2 (NNM-819), Na0.8Ni0.2Mn0.8O2 (NNM-828), and Na0.8Ni0.3Mn0.7O2 (NNM-837) were synthesized and characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and electrochemical analyses. The addition of Ni2+ increased the Mn oxidation state from + 3 to + 4, thus reducing the Jahn–Teller effect of Mn3+ and stabilizing the material structure. NNM-819 exhibited the best electrochemical performance. Its initial discharge-specific capacity was 198.5mAh g−1 at a current density of 0.2C, and the capacity retention rate after 100 cycles was 86.9% at 0.5C. Moreover, its capacity retention rate at 1.0C high-rate cycling after 100 cycles remained high 81.9%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper.

References

  1. Zhao L, Qu Z (2022) Advanced flexible electrode materials and structural designs for sodium ion batteries [J]. J Energy Chem 71(08):108–128

    Article  CAS  Google Scholar 

  2. Chen Fh, Yw Wu, Zhang Hh, Zt Long, Xx Lin, Mz Chen, Chen Q, Yf Luo, Chou SL, Zeng Rh (2021) The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. Int J Miner Metall Mater 28(10):1675–1683

    Article  CAS  Google Scholar 

  3. Wang Y, Liu Y, Liu Y, Shen Q, Chen C, Qiu F, Li P, Jiao L, Qu X (2021) Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem 54:225–241

    Article  CAS  Google Scholar 

  4. Zhang P, Shu Y, Wang Y, Ye J, Yang L (2023) Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. J Mater Chem A 11(6):2920–2932

    Article  CAS  Google Scholar 

  5. Qiao S, Zhou Q, Ma M, Liu HK, Dou SX, Chong S (2023) Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17(12):11220–11252

    Article  CAS  PubMed  Google Scholar 

  6. Liu Daokun, Guo Jinxue, Sun Yanfang, Zhang Xiao (2022) NASICON-structured Na3Mn0.5V0.5Ti(PO4)3 cathode with high capacity for sodium-ion batteries. Ceram Int 48(14):20933–20939 (ISSN 0272-8842)

    Article  CAS  Google Scholar 

  7. Yang W, Chang LM, Luo S, Bi X, Cao S, Wei A, Liu J, Zhang F (2022) Study on annealing treatment of spinel LiNi0.5Mn1.5O4 as cathode materials for high-voltage lithium-ion batteries. Int J Energy Res 46(13):18495–18510

    Article  CAS  Google Scholar 

  8. Wei A, Chang L, Luo S, Cao S, Bi X, Yang W, Liu J, Zhang F (2021) Preparation of LiNi0.5Mn1.5O4 cathode materials by non-constant temperature calcination and research on its performance. Ionics 28(2):555–565

    Article  Google Scholar 

  9. Bomio MRD, Lavela P, Santiago AAG, Motta FV, Tirado JL (2023) Optimized synthesis of Na2/3Ni1/3Mn2/3O2 as cathode for sodium-ion batteries by rapid microwave calcination. Ceram Int 49(8):12452–12461

    Article  CAS  Google Scholar 

  10. Dai Y, Chen Q, Hu C, Huang Y, Wu W, Yu M, Sun D, Luo W (2022) Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chin Chem Lett 33(3):1435–1438

    Article  CAS  Google Scholar 

  11. Vergnet J, Saubanère M, Doublet ML, Tarascon J-M (2020) The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4(2):420–434

    Article  CAS  Google Scholar 

  12. Wang C, Liu L, Zhao S, Liu Y, Yang Y, Yu H, Lee S, Lee GH, Kang Y-M, Liu R, Li F, Chen J (2021) Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun 12(21):2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pei Q, Lu M, Liu Z, Li D, Rao X, Liu X, Zhong S (2022) Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu codoping for sodium-ion batteries. ACS Appl Energy Mater 5(2):1953–1962

    Article  CAS  Google Scholar 

  14. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102

    Article  Google Scholar 

  15. Cheng Z, Zhao B, Guo YJ, Yu L, Yuan B, Hua W, Yin YX, Xu S, Xiao B, Han X, Wang PF, Guo YG (2022) Mitigating the large‐volume phase transition of P2‐type cathodes by synergetic effect of multiple ions for improved sodium‐ion batteries. Adv Energy Mater 12(14):2103461

  16. Kaliyappan K, Or T, Deng YP, Hu Y, Bai Z, Chen Z (2020) Constructing safe and durable high‐voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone. Adv Funct Mater 30(17):1910251

  17. Clément RJ, Bruce PG, Grey CP (2015) Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162(14):A2589–A2604

    Article  Google Scholar 

  18. Sun JW, Jiang HY, Sun CH, Luo WB, Mao J, Dai KH (2020) Review. Progress Chem 32(6):803–816

    Google Scholar 

  19. Zhang X, Zhang Z, Yao S, Chen A, Zhao X, Zhou Z (2018) An effective method to screen sodium-based layered materials for sodium ion batteries. npj Comput Mater 4(1):13

  20. Yang Y, Feng Y, Ma C, Huang Q, Zhou L, Wang P, Wei W (2020) Dual-role surface modification of layered oxide cathodes for high-power sodium-ion batteries. ChemElectroChem 7(3):691–696

    Article  CAS  Google Scholar 

  21. Xiao B, Soto FA, Gu M, Han KS, Song J, Wang H, Engelhard MH, Murugesan V, Mueller KT, Reed D, Sprenkle VL, Balbuena PB, Li X (2018) Lithium‐pretreated hard carbon as high‐performance sodium‐ion battery anodes. Adv Energy Mater 8(24):1801441

  22. Zhang J, Lai Y, Li P, Wang Y, Zhong F, Feng X, Chen W, Liu J, Ai X, Yang H, Cao Y (2022) Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries. Green Energy Environ 7(6):1253–1262

    Article  CAS  Google Scholar 

  23. Zheng S, Tian Y, Liu Y et al (2021) Alloy anodes for sodium-ion batteries[J]. Rare Met 40(02):272–289

    Article  CAS  Google Scholar 

  24. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou SL, Dou SX (2019) Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15(32):e1805381

    Article  PubMed  Google Scholar 

  25. Wei FL, Zhang QP, Zhang P, Tian WQ, Dai KH, Zhang L, Mao J, Shao GS (2021) Review—Research progress on layered transition metal oxide cathode materials for sodium ion batteries. J Electrochem Soc 168:050524

    Article  CAS  Google Scholar 

  26. Zhuo Y, Chen T, Liu W, Hu H, Zhang J, Liu P, Cai R, Chen X, Yan J, Liu K (2019) Nanoparticles assembled microspheres as a high-rate cathode material for sodium ion batteries. J Electrochem Soc 166(2):A10–A14

    Article  CAS  Google Scholar 

  27. Guo YJ, Wang PF, Niu YB, Zhang XD, Li Q, Yu X, Fan M, Chen WP, Yu Y, Liu X, Meng Q, Xin S, Yin YX, Guo YG (2021) Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nat Commun 12(1):5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zarrabeitia M, Gonzalo E, Pasqualini M, Ciambezi M, Lakuntza O, Nobili F, Trapananti A, Di Cicco A, Aquilanti G, Katcho NA, López del Amo JM, Carrasco J, Muñoz-Márquez MÁ, Rojo T (2019) Unraveling the role of Ti in the stability of positive layered oxide electrodes for rechargeable Na-ion batteries. J Materi Chem A 7(23):14169–14179

    Article  CAS  Google Scholar 

  29. Yoshida J et al (2014) New P2-Na0.70Mn0.60Ni0.30Co0.10O2 layered oxide as electrode material for Na-ion batteries. J Electrochem Soc 161:A1987–A1991

    Article  CAS  Google Scholar 

  30. Zhang XH, Pang WL, Wan F, Guo JZ, Lu HY, Li JY, Xing YM, Zhang JP, Wu XL (2016) P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanisam via graphene connection. ACS Appl Mater Interfaces 8:20650–20659

    Article  CAS  PubMed  Google Scholar 

  31. Lee SY, Kim JH, Kang YC (2017) Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries. Electrochim Acta 225:86–92

    Article  CAS  Google Scholar 

  32. Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources 356:80–88

    Article  CAS  Google Scholar 

  33. Zj Cao, Li J, Zhou CJ, Ma XB, Wang HL (2020) Contribution of titanium substitution on improving the electrochemical properties of P2-Na0.67Ni0.33Mn0.67O2 cathode material for sodium-ion storage[J]. Funct Mater Lett 13(3):2051010

    Article  Google Scholar 

  34. Yue RY, Xia F, Qi RJ, Tie D, Shi SS, Li ZP, Zhao YF, Zhang JJ (2021) Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance [J]. Chin Chem Lett 32(2):849–853

    Article  CAS  Google Scholar 

  35. Linnell SF, Kim EJ, Choi Y-S, Hirsbrunner M, Imada S, Pramanik A, Cuesta AF, Miller DN, Fusco E, Bode BE, Irvine JTS, Duda LC, Scanlon DO, Armstrong AR (2022) Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteries. J Mater Chem A 10(18):9941–9953

    Article  CAS  Google Scholar 

  36. Yua XG, Guo YJ, Gan L, Yang XA, He WH, Zhang XS, Yin YX, Xin S, Yao HR, Huang Z, Guo YG (2022) A universal strategy toward air‐stable and high‐rate O3 layered oxide cathodes for Na‐ion batteries. dv Funct Mater 32(17):2111466

  37. Wang SM, Li CL, Fan XQ, Wen SX, Lu HL, Dong H, Wang J, Quan Y, Li SY (2021) Selection of sodium salt electrolyte compatible with Na0.67Ni0.15Fe0.2Mn0.65O2 cathode for sodium-ion batteries [J]. Energy Technol 9(9):1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author 1 (First Author):Complete the experimental data required for the paper ,Wrote the main manuscript document. Author 2 and 3 :Analyze and process certain data. Corresponding Author: Provides the direction of the project, the support of the test fund and so on.

Corresponding author

Correspondence to Shengwen Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Guo, Z., Huang, J. et al. Effects of the Mn/Ni ratio on the battery performance of layered Na-Ni-Mn oxide cathode materials in sodium-ion batteries. Ionics 30, 207–216 (2024). https://doi.org/10.1007/s11581-023-05277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05277-4

Keywords

Navigation