Skip to main content

Advertisement

Log in

Preparation of hierarchically porous carbon spheres by hydrothermal carbonization process for high-performance electrochemical capacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hydrothermal carbonization (HTC) process of biomass has showed many merits for the preparation of unique carbon-based material. To overcome the challenges of inherently low porosity and conductivity associated with HTC method-prepared carbons, herein a modified hydrothermal reaction was employed to prepare hierarchically porous carbon spheres (HPCS) with large surface area by using starch as carbon precursor and ammonium ferrous sulfate as porogen. The HPCS materials exhibit excellent electrochemical performance as active materials for electric double-layer capacitors, as demonstrated by a large specific capacitance of 248 F g−1 at 0.5 A g−1, a high volumetric capacitance of 181 F cm−3 at 0.5 A g−1, good capacity retention, and excellent cycling stability. The modified hydrothermal method proposed here is promising to prepare carbon materials for wide applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 17(1):53–57

    CAS  Google Scholar 

  2. Gutmann G (1999) Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple. J Power Sources 84(2):275–279

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46(5):1094–1103

    Article  CAS  Google Scholar 

  4. Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  6. Yu ZN, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  CAS  Google Scholar 

  7. Xu GY, Nie P, Dou H, Ding B, Li LY, Zhang XG (2017) Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today 20(4):191–209

    Article  CAS  Google Scholar 

  8. Ke QQ, Wang J (2016) Graphene-based materials for supercapacitor electrodes-a review. J Materiomics 2(1):37–54

    Article  Google Scholar 

  9. Choi H, Yoon H (2015) Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 5(2):906–936

    Article  CAS  Google Scholar 

  10. Benaddi H, Bandosz TJ, Jagiello J, Schwarz JA, Rouzaud JA, Legras D, Béguin F (2000) Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38(5):669–674

    Article  CAS  Google Scholar 

  11. Pandolfo AG, Amini-Amoli M, Killingley JS (1994) Activated carbons prepared from shells of different coconut varieties. Carbon 32(5):1015–1019

    Article  CAS  Google Scholar 

  12. Gergova K, Petrov N, Eser S (1994) Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon 32(4):693–702

    Article  CAS  Google Scholar 

  13. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17):2676–2682

    Article  CAS  Google Scholar 

  14. Zhao QL, Wang XY, Xia H, Liu J, Wang H, Gao J, Zhang YW, Liu J, Zhou HY, Li XL, Zhang SY, Wang XY (2015) Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochim Acta 173:566–574

    Article  CAS  Google Scholar 

  15. Ma YZ, Yu BJ, Guo Y, Wang CY (2016) Facile synthesis of biomass-derived hierarchical porous carbon microbeads for supercapacitors. J Solid State Electrochem 20(8):2231–2240

    Article  CAS  Google Scholar 

  16. Wang WX, Quan HY, Gao WM, Zou R, Chen DZ, Dong YH, Guo L (2016) N-doped hierarchical porous carbon from waste boat-fruited sterculia seed for high performance supercapacitors. RSC Adv 7:16678–16687

    Article  Google Scholar 

  17. Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667

    Article  CAS  Google Scholar 

  18. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7(8):1108–1117

    Article  CAS  Google Scholar 

  19. Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267):1508–1513

    Article  CAS  Google Scholar 

  20. Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D (2006) Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc 128(35):11652–11662

    Article  CAS  Google Scholar 

  21. Li HQ, Liu RL, Zhao DY, Xia YY (2007) Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45(13):2628–2635

    Article  CAS  Google Scholar 

  22. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49(12):2796–2806

    Article  CAS  Google Scholar 

  23. Chen YZ, Wang C, Wu ZY, Xiong YJ, Xu Q, Yu SH, Jiang HL (2015) Metal-organic frameworks: from bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27(34):5010–5016

    Article  CAS  Google Scholar 

  24. Yang SJ, Kim T, Ji HI, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24(3):464–470

    Article  CAS  Google Scholar 

  25. Wang J, Shen LF, Ding B, Nie P, Deng HF, Dou H, Zhang XG (2014) Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Adv 4(15):7538–7544

    Article  CAS  Google Scholar 

  26. Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49(43):7987–7991

    Article  CAS  Google Scholar 

  27. Sun PP, Zhang KT, Shang SB, Song J, Wang D (2016) Sustainable production of activated carbon spheres from ethyl cellulose. RSC Adv 6(98):95656–95662

    Article  CAS  Google Scholar 

  28. Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibañez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes. J Phys Chem C 114(22):10302–10307

    Article  CAS  Google Scholar 

  29. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  CAS  Google Scholar 

  30. Wang J, Tang J, Xu YL, Ding B, Chang Z, Wang Y, Hao XD, Dou H, Kim JH, Zhang XG, Yamauchi Y (2016) Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28:232–240

    Article  CAS  Google Scholar 

  31. Krishnan D, Raidongia K, Shao J, Huang J (2014) Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano 8(1):449–457

    Article  CAS  Google Scholar 

  32. Choi Y, Kim S, Choi Y, Song J, Kwon TH, Kwon OH, Kim BS (2017) Morphology tunable hybrid carbon nanosheets with solvatochromism. Adv Mater 29(24):1701075

    Article  Google Scholar 

  33. Wohlgemuth SA, White RJ, Willinger MG, Titirici MM, Antonietti M (2012) A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem 14:1515–1523

    Article  CAS  Google Scholar 

  34. Wang J, Nie P, Ding B, Dong SY, Hao XD, Dou H, Zhang XG (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 6:2411–2428

    Article  Google Scholar 

  35. Falco C, Caballero FP, Babonneau F, Gervais C, Laurent G, Titirici MM, Niki B (2011) Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 27:14460–14471

    Article  CAS  Google Scholar 

  36. Hao L, Li XL, Zhi LJ (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25(28):3899–3904

    Article  CAS  Google Scholar 

  37. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116

    Article  CAS  Google Scholar 

  38. Kim KH, Kim KB, Park SM, Roh KC (2016) Hierarchically structured activated carbon for ultracapacitors. Sci Rep 6:21182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51407034, No. 51407031, No. 51402249), the Natural Science Foundation of Fujian Province of China (No. 2016H0038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjun Lu or Yang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jiang, C., Hu, Y. et al. Preparation of hierarchically porous carbon spheres by hydrothermal carbonization process for high-performance electrochemical capacitors. J Appl Electrochem 48, 233–241 (2018). https://doi.org/10.1007/s10800-018-1146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1146-x

Keywords

Navigation