Skip to main content
Log in

High-yield production of porous carbon spheres derived from enzymatic hydrolysis lignin for zinc ion hybrid capacitors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The widespread implementation of supercapacitors is hindered by the limited energy density and the pricey porous carbon electrode materials. The cost of porous carbon is a significant factor in the overall cost of supercapacitors, therefore a high carbon yield could effectively mitigate the production cost of porous carbon. This study proposes a method to produce porous carbon spheres through a spray drying technique combined with a carbonization process, utilizing renewable enzymatic hydrolysis lignin as the carbon source and KOH as the activation agent. The purpose of this study is to examine the relationship between the quantity of activation agent and the development of morphology, pore structure, and specific surface area of the obtained porous carbon materials. We demonstrate that this approach significantly enhances the carbon yield of porous carbon, achieving a yield of 22% in contrast to the conventional carbonization-activation method (9%). The samples acquired through this method were found to contain a substantial amount of mesopores, with an average pore size of 1.59 to 1.85 nm and a mesopore ratio of 25.6%. Additionally, these samples showed high specific surface areas, ranging from 1051 to 1831 m2·g−1. Zinc ion hybrid capacitors with lignin-derived porous carbon cathode exhibited a high capacitance of 279 F·g−1 at 0.1 A·g−1 and an energy density of 99.1 Wh·kg−1 when the power density was 80 kW·kg−1. This research presents a novel approach for producing porous carbons with high yield through the utilization of a spray drying approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Y, Bremner S, Menictas C, Kay M. Battery energy storage system size determination in renewable energy systems: a review. Renewable & Sustainable Energy Reviews, 2018, 91: 109–125

    Article  Google Scholar 

  2. Zhao H, Wu Q, Hu S, Xu H, Rasmussen C N. Review of energy storage system for wind power integration support. Applied Energy, 2015, 137: 545–553

    Article  ADS  Google Scholar 

  3. Liu S, Yin Y, Ni D, Hui K S, Ma M, Park S, Hui K N, Ouyang C Y, Jun S C. New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Materials, 2019, 22: 384–396

    Article  Google Scholar 

  4. Liu S, Kang L, Jun S C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Advanced Materials, 2021, 33(47): 2004689

    Article  CAS  Google Scholar 

  5. Yoo H D, Han S D, Bayliss R D, Gewirth A A, Genorio B, Rajput N N, Persson K A, Burrell A K, Cabana J. “Rocking-chair”-type metal hybrid supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(45): 30853–30862

    Article  CAS  Google Scholar 

  6. Iqbal M Z, Aziz U. Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. Journal of Energy Storage, 2022, 46: 103823

    Article  Google Scholar 

  7. Xu R H, Ma P P, Liu G F, Qiao Y, Hu R Y, Liu L Y, Demir M, Jiang G H. Dual-phase coexistence design and advanced electrochemical performance of Cu2MoS4 electrode materials for supercapacitor application. Energy & Fuels, 2023, 37(8): 6158–6167

    Article  CAS  Google Scholar 

  8. Jiao Z, Chen Y, Du M, Demir M, Yan F, Zhang Y, Wang C, Gu M, Zhang X, Zou J. In-situ formation of morphology-controlled cobalt vanadate on coo urchin-like microspheres as asymmetric supercapacitor electrode. Journal of Alloys and Compounds, 2023, 958: 170489

    Article  CAS  Google Scholar 

  9. Hu R Y, Liu L Y, He J H, Zhou Y, Wu S B, Zheng M X, Demir M, Ma P P. Preparation and electrochemical properties of bimetallic carbide Fe3Mo3C/Mo2C@carbon nanotubes as negative electrode material for supercapacitor. Journal of Energy Storage, 2023, 72: 108656

    Article  Google Scholar 

  10. Aydin H, Kurtan Ü, Üstün B, Koç S N, Akgül E, Demir M. A review on the recent advancement of metal-boride derived nanostructures for supercapacitors. Journal of Energy Storage, 2023, 72: 108306

    Article  Google Scholar 

  11. Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Advanced Energy Materials, 2021, 11(14): 2003994

    Article  CAS  Google Scholar 

  12. Wang Y, Sun S, Wu X, Liang H, Zhang W. Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Letters, 2023, 15(1): 78

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu Y, Wu L. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy, 2023, 109: 108290

    Article  CAS  Google Scholar 

  14. Sui D, Wu M, Shi K, Li C, Lang J, Yang Y, Zhang X, Yan X, Chen Y. Recent progress of cathode materials for aqueous zinc-ion capacitors: carbon-based materials and beyond. Carbon, 2021, 185: 126–151

    Article  CAS  Google Scholar 

  15. Javed M S, Najam T, Hussain I, Idrees M, Ahmad A, Imran M, Shah S S A, Luque R, Han W. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Advanced Energy Materials, 2023, 13(3): 2202303

    Article  CAS  Google Scholar 

  16. Yin J, Zhang W, Alhebshi N A, Salah N, Alshareef H N. Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Advanced Energy Materials, 2021, 11(21): 2100201

    Article  CAS  Google Scholar 

  17. Wang L, Peng M, Chen J, Tang X, Li L, Hu T, Yuan K, Chen Y. High energy and power zinc ion capacitors: a dual-ion adsorption and reversible chemical adsorption coupling mechanism. ACS Nano, 2022, 16(2): 2877–2888

    Article  CAS  PubMed  Google Scholar 

  18. Jian W, Zhang W, Wei X, Wu B, Liang W, Wu Y, Yin J, Lu K, Chen Y, Alshareef H N, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Advanced Functional Materials, 2022, 32(49): 2209914

    Article  CAS  Google Scholar 

  19. Zhang W, Yin J, Jian W, Wu Y, Chen L, Sun M, Schwingenschlögl U, Qiu X, Alshareef H N. Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy, 2022, 103: 107827

    Article  CAS  Google Scholar 

  20. Lee D W, Jin M H, Park J H, Lee Y J, Choi Y C. Flexible synthetic strategies for lignin-derived hierarchically porous carbon materials. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10454–10462

    Article  CAS  Google Scholar 

  21. Gan M J, Niu Y Q, Qu X J, Zhou C H. Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chemistry, 2022, 24(20): 7705–7750

    Article  CAS  Google Scholar 

  22. Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5): 1175–1200

    Article  CAS  Google Scholar 

  23. Zhu J, Yan C, Zhang X, Yang C, Jiang M, Zhang X. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76: 100788

    Article  Google Scholar 

  24. Zhu J Y, Pan X J. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 2010, 101(13): 4992–5002

    Article  CAS  PubMed  Google Scholar 

  25. Chen W, Wang X, Hashisho Z, Feizbakhshan M, Shariaty P, Niknaddaf S, Zhou X. Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous and Mesoporous Materials, 2019, 280: 57–65

    Article  CAS  Google Scholar 

  26. Jung K A, Woo S H, Lim S R, Park J M. Pyrolytic production of phenolic compounds from the lignin residues of bioethanol processes. Chemical Engineering Journal, 2015, 259: 107–116

    Article  CAS  Google Scholar 

  27. Guo N, Li M, Sun X, Wang F, Yang R. Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chemistry, 2017, 19(11): 2595–2602

    Article  CAS  Google Scholar 

  28. Shi F, Tong Y, Li H, Li J, Cong Z, Zhai S, An Q, Wang K. Synthesis of oxygen/nitrogen/sulfur codoped hierarchical porous carbon from enzymatically hydrolyzed lignin for high-performance supercapacitors. Journal of Energy Storage, 2022, 52: 104992

    Article  Google Scholar 

  29. Zhu J, Qiu X, Sun S, Huang T, Huang Z, Zhao L, Zu X, Zhang W. Combined sustainable production technology of calcium chloride and lignin-derived porous carbon electrode materials. Journal of Cleaner Production, 2023, 419: 138201

    Article  CAS  Google Scholar 

  30. Liu X, Zuo S, Cui N, Wang S. Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon, 2022, 191: 581–592

    Article  CAS  Google Scholar 

  31. Xu M, Yu Q, Liu Z, Lv J, Lian S, Hu B, Mai L, Zhou L. Tailoring porous carbon spheres for supercapacitors. Nanoscale, 2018, 10(46): 21604–21616

    Article  CAS  PubMed  Google Scholar 

  32. Tan S, Chen X, Zhai S, Ebrahimi A, Langrish T, Chen Y. Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147: 308–316

    Article  CAS  Google Scholar 

  33. Kwon H N, Park G D, Kang Y C, Roh K C. Fabrication of bimodal micro-mesoporous amorphous carbon-graphitic carbon-reduced graphene oxide composite microspheres prepared by pilot-scale spray drying and their application in supercapacitors. Carbon, 2019, 144: 591–600

    Article  CAS  Google Scholar 

  34. Tian H, Wang T, Zhang F, Zhao S, Wan S, He F, Wang G. Tunable porous carbon spheres for high-performance rechargeable batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12816–12841

    Article  CAS  Google Scholar 

  35. Cai T, Xing W, Liu Z, Zeng J, Xue Q, Qiao S, Yan Z. Superhighrate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86: 235–244

    Article  CAS  Google Scholar 

  36. Li X F, Xu Q, Fu Y, Guo Q X. Preparation and characterization of activated carbon from kraft lignin via KOH activation. Environmental Progress & Sustainable Energy, 2014, 33(2): 519–526

    Article  ADS  CAS  Google Scholar 

  37. Pan Z Z, Dong L, Lv W, Zheng D, Li Z, Luo C, Zheng C, Yang Q H, Kang F. A hollow spherical carbon derived from the spray drying of corncob lignin for high-rate-performance supercapacitors. Chemistry, an Asian Journal, 2017, 12(5): 503–506

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Zhang G, Zhang J, Guo H, Feng X, Chen Y. Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors. Journal of Materials Science and Technology, 2018, 34(11): 2189–2196

    Article  CAS  Google Scholar 

  39. Wang C, Wang X, Lu H, Li H, Zhao X S. Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors. Carbon, 2018, 140: 139–147

    Article  CAS  Google Scholar 

  40. Wang L, Li H, Li M, Zhang L, Zhang H, Liu Z Y, Zhu W. Trace nitrogen-doped hierarchical porous biochar nanospheres: waste corn roots derived superior adsorbents for high concentration single and mixed organic dyes removal. Nano Research, 2023, 16(2): 1846–1858

    Article  ADS  CAS  Google Scholar 

  41. Li G, Gao X, Wang K, Cheng Z. Porous carbon nanospheres with high edlc capacitance. Diamond and Related Materials, 2018, 88: 12–17

    Article  ADS  CAS  Google Scholar 

  42. Wang L, Peng M, Chen J, Hu T, Yuan K, Chen Y. Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-ion storage capability. Advanced Materials, 2022, 34(39): 2203744

    Article  CAS  Google Scholar 

  43. Yang J, Wu H, Zhu M, Ren W, Lin Y, Chen H, Pan F. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy, 2017, 33: 453–461

    Article  CAS  Google Scholar 

  44. Yoo Y, Park G D, Kang Y C. Carbon microspheres with micro- and mesopores synthesized via spray pyrolysis for high-energy-density, electrical-double-layer capacitors. Chemical Engineering Journal, 2019, 365: 193–200

    Article  CAS  Google Scholar 

  45. Li C, Li Y, Shao Y, Zhang L, Zhang S, Wang S, Li B, Cui Z, Tang Y, Hu X. Activation of biomass with volatilized KOH. Green Chemistry, 2023, 25(7): 2825–2839

    Article  CAS  Google Scholar 

  46. Fu F, Zhao B, Yang D, Wang H, Yan M, Li Z, Qin Y, Qiu X. Insights into gas-exfoliation and the in-situ template mechanism of zinc compound for lignin-derived supercapacitive porous carbon. ACS Applied Energy Materials, 2021, 4(12): 13617–13626

    Article  CAS  Google Scholar 

  47. Shao Y, Sun Z, Tian Z, Li S, Wu G, Wang M, Tong X, Shen F, Xia Z, Tung V, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Advanced Functional Materials, 2021, 31(6): 2007843

    Article  CAS  Google Scholar 

  48. Wu J, Liu R, Li M, Luo X, Lai W, Zhang X, Li D, Yu F, Chen Y. Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors. Journal of Energy Storage, 2022, 48: 103996

    Article  Google Scholar 

  49. Yin J, Zhang W, Wang W, Alhebshi N A, Salah N, Alshareef H N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Advanced Energy Materials, 2020, 10(37): 2001705

    Article  CAS  Google Scholar 

  50. Zhao L, Jian W, Zhu J, Zhang X, Wen F, Fei X, Chen L, Huang S, Yin J, Chodankar N R, et al. Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors. ACS Applied Materials & Interfaces, 2022, 14(38): 43431–43441

    Article  CAS  Google Scholar 

  51. Hu M, Ye Z, Zhang Q, Xue Q, Li Z, Wang J, Pan Z. Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass. Energy, 2022, 245: 123286

    Article  CAS  Google Scholar 

  52. Zhou W, Bai B, Chen G, Ma L, Yan B. Thermogravimetric characteristics and kinetics of sawdust pyrolysis catalyzed by potassium salt during the process of hydrogen preparation. International Journal of Hydrogen Energy, 2019, 44(30): 15863–15870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 22108044), the Research and Development Program in Key Fields of Guangdong Province (Grant No. 2020B1111380002), and the Basic Research and Applicable Basic Research in Guangzhou City (Grant No. 202201010290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqing Qiu or Wenli Zhang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Zu, X., Ma, J. et al. High-yield production of porous carbon spheres derived from enzymatic hydrolysis lignin for zinc ion hybrid capacitors. Front. Chem. Sci. Eng. 18, 22 (2024). https://doi.org/10.1007/s11705-024-2387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2387-3

Keywords

Navigation