Journal of Applied Electrochemistry

, Volume 47, Issue 11, pp 1203–1211 | Cite as

Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction

  • Jun-ichi Inamoto
  • Tomokazu Fukutsuka
  • Kohei Miyazaki
  • Takeshi Abe
Research Article


Metal oxide coating on positive active materials in lithium-ion batteries is an effective way to improve its cycleability. However, coating state of the metal oxide layer and the mechanism of the improvement have not been fully understood. In this paper, the coated state of ZrO2 on a LiCoO2 thin-film electrode was investigated using a ferrocene redox reaction, and the role of the ZrO2-coating on the degradation phenomena of the LiCoO2 was investigated. The redox behavior of ferrocene revealed that the ZrO2 layer did not cover the entire surface area of LiCoO2, that is, the ZrO2 layer was not compact and contained cracks. In addition, a lithium-ion deficit phase (Li1−x CoO2) was irreversibly formed on the uncovered LiCoO2 areas. In spite of the imperfect ZrO2 layer, the formation of the lithium-ion deficit phase inside the bulk was suppressed. It is clarified that a partial ZrO2 coating on the LiCoO2 is sufficient to suppress the growth of the lithium-ion deficit phase inside the bulk of LiCoO2.

Graphical abstract


LiCoO2 thin-film electrode ZrO2 coating Ferrocene redox reaction Degradation mechanism Surface electron conductivity 



This work was partially supported by CREST, JST (JPMJCR12C1). Funidng was provided by Core Research for Evolutional Science and Technology.


  1. 1.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. doi: 10.1016/0025-5408(80)90012-4 CrossRefGoogle Scholar
  2. 2.
    Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R-3m) for 4 Volt secondary lithium cells. J Electrochem Soc 141:2972–2977. doi: 10.1149/1.2059267 CrossRefGoogle Scholar
  3. 3.
    Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2002) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47:4291–4306. doi: 10.1016/S0013-4686(02)00417-6 CrossRefGoogle Scholar
  4. 4.
    Wang H, Jang Y, Huang B, Sadoway DR, Chiang Y-M (1999) TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J Electrochem Soc 146:473–480. doi: 10.1149/1.1391631 CrossRefGoogle Scholar
  5. 5.
    Gabrisch H, Yazami R, Fultz B (2004) Hexagonal to cubic spinel transformation in lithiated cobalt oxide TEM investigation. J Electrochem Soc 151:A891–A897. doi: 10.1149/1.1738677 CrossRefGoogle Scholar
  6. 6.
    Amatucci GG, Tarascon JM, Klein LC (1996) Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83:167–173. doi: 10.1016/0167-2738(95)00231-6 CrossRefGoogle Scholar
  7. 7.
    Edström K, Gustafsson T, Thoma JO (2004) The cathode-electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403. doi: 10.1016/j.electacta.2004.03.049 CrossRefGoogle Scholar
  8. 8.
    Hirayama M, Sonoyama N, Abe T, Minoura M, Ito M, Mori D, Yamada A, Kanno R, Terashima T, Takano M, Tamura K, Mizuki J (2007) Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry: a new experimental technique for LiCoO2 model electrode. J Power Sources 168:493–500. doi: 10.1016/j.jpowsour.2007.03.034 CrossRefGoogle Scholar
  9. 9.
    Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2012) First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy. Angew Chem Int Ed 51:1–6. doi: 10.1002/anie.201203910 CrossRefGoogle Scholar
  10. 10.
    Cho J, Kim YJ, Kim T-J, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed 40:3367–3369. doi: 10.1002/1521-3773(20010917)40 CrossRefGoogle Scholar
  11. 11.
    Chen Z, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216. doi: 10.1149/1.1503202 CrossRefGoogle Scholar
  12. 12.
    Liu L, Chen L, Huang X, Yang X-Q, Yoon W-S, Lee HS, McBreen J (2004) Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc 151:A1344–A1351. doi: 10.1149/1.1772781 CrossRefGoogle Scholar
  13. 13.
    Chung KY, Yoon W-S, McBreen J, Yang X-Q, Oh SH, Shin HC, Cho WI, Cho BW (2006) Structural studies on the effects of ZrO2 Coating on LiCoO2 during cycling using in situ X-ray diffraction technique. J Electrochem Soc 153:A2152–A2157. doi: 10.1149/1.2338661 CrossRefGoogle Scholar
  14. 14.
    Cho J, Kim T-G, Kim C, Lee J-G, Kim Y-W, Park B (2005) Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J Power Sources 146:58–64. doi: 10.1016/j.jpowsour.2005.03.118 CrossRefGoogle Scholar
  15. 15.
    Hwang BJ, Chen CY, Cheng MY, Santhanam R, Ragavendran K (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sources 195:4255–4265. doi: 10.1016/j.jpowsour.2010.01.040 CrossRefGoogle Scholar
  16. 16.
    Takamatsu D, Mori S, Orikasa Y, Nakatsutsumi T, Koyama Y, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2013) Effects of ZrO2 coating on LiCoO2 thin-film electrode studied by in situ X-ray absorption spectroscopy. J Electrochem Soc 160:A3054–A3060. doi:  10.1149/2.006305jes CrossRefGoogle Scholar
  17. 17.
    Xu S, Jacobs RM, Nguyen HM, Hao S, Mahanthappa M, Wolverton C, Morgan D (2015) Lithium transport through lithium-ion battery cathode coatings. J Mater Chem A 3:17248–17272. doi: 10.1039/C5TA01664A CrossRefGoogle Scholar
  18. 18.
    Miyashiro H, Yamanaka A, Tabuchi M, Seki S, Nakayama M, Ohno Y, Kobayashi Y, Mita Y, Usami A, Wakihara M (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153:A348–A353. doi: 10.1149/1.2149306 CrossRefGoogle Scholar
  19. 19.
    Iriyama Y, Kurita H, Yamada I, Abe T, Ogumi Z (2004) Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode. J Power Sources 137:111–116. doi: 10.1016/j.jpowsour.2004.05.029 CrossRefGoogle Scholar
  20. 20.
    Inamoto J, Fukutsuka T, Miyazaki K, Abe T (2017) Investigation of the surface state of LiCoO2 thin-film electrodes using a redox reaction of ferrocene. J Electrochem Soc 164:A555–A559. doi: 10.1149/2.0321704jes CrossRefGoogle Scholar
  21. 21.
    Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097. doi: 10.1149/1.2221184 CrossRefGoogle Scholar
  22. 22.
    Keramidas VG, White WB (1974) Raman scattering study of the crystallization and phase transformations of ZrO2. J Am Ceram Soc 57:22–24. doi: 10.1111/j.1151-2916.1974.tb11355.x CrossRefGoogle Scholar
  23. 23.
    Inaba M, Iriyama Y, Ogumi Z, Todzuka Y, Tasaka A (1997) A Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J Raman Spectrosc 28:613–617. doi: 10.1002/(SICI)1097-4555(199708)28 CrossRefGoogle Scholar
  24. 24.
    Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C 21:L199–L201. doi: 10.1088/0022-3719/21/7/007 CrossRefGoogle Scholar
  25. 25.
    Iriyama Y, Inaba M, Abe T, Ogumi Z (2001) Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties. J Power Sources 94:175–182. doi: 10.1016/S0378-7753(00)00580-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Hall of Global Environmental ResearchKyoto UniversityKyotoJapan

Personalised recommendations