Skip to main content
Log in

Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Metal oxide coating on positive active materials in lithium-ion batteries is an effective way to improve its cycleability. However, coating state of the metal oxide layer and the mechanism of the improvement have not been fully understood. In this paper, the coated state of ZrO2 on a LiCoO2 thin-film electrode was investigated using a ferrocene redox reaction, and the role of the ZrO2-coating on the degradation phenomena of the LiCoO2 was investigated. The redox behavior of ferrocene revealed that the ZrO2 layer did not cover the entire surface area of LiCoO2, that is, the ZrO2 layer was not compact and contained cracks. In addition, a lithium-ion deficit phase (Li1−x CoO2) was irreversibly formed on the uncovered LiCoO2 areas. In spite of the imperfect ZrO2 layer, the formation of the lithium-ion deficit phase inside the bulk was suppressed. It is clarified that a partial ZrO2 coating on the LiCoO2 is sufficient to suppress the growth of the lithium-ion deficit phase inside the bulk of LiCoO2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. doi:10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  2. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R-3m) for 4 Volt secondary lithium cells. J Electrochem Soc 141:2972–2977. doi:10.1149/1.2059267

    Article  CAS  Google Scholar 

  3. Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2002) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47:4291–4306. doi:10.1016/S0013-4686(02)00417-6

    Article  CAS  Google Scholar 

  4. Wang H, Jang Y, Huang B, Sadoway DR, Chiang Y-M (1999) TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J Electrochem Soc 146:473–480. doi:10.1149/1.1391631

    Article  CAS  Google Scholar 

  5. Gabrisch H, Yazami R, Fultz B (2004) Hexagonal to cubic spinel transformation in lithiated cobalt oxide TEM investigation. J Electrochem Soc 151:A891–A897. doi:10.1149/1.1738677

    Article  CAS  Google Scholar 

  6. Amatucci GG, Tarascon JM, Klein LC (1996) Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83:167–173. doi:10.1016/0167-2738(95)00231-6

    Article  CAS  Google Scholar 

  7. Edström K, Gustafsson T, Thoma JO (2004) The cathode-electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403. doi:10.1016/j.electacta.2004.03.049

    Article  Google Scholar 

  8. Hirayama M, Sonoyama N, Abe T, Minoura M, Ito M, Mori D, Yamada A, Kanno R, Terashima T, Takano M, Tamura K, Mizuki J (2007) Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry: a new experimental technique for LiCoO2 model electrode. J Power Sources 168:493–500. doi:10.1016/j.jpowsour.2007.03.034

    Article  CAS  Google Scholar 

  9. Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2012) First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy. Angew Chem Int Ed 51:1–6. doi:10.1002/anie.201203910

    Article  Google Scholar 

  10. Cho J, Kim YJ, Kim T-J, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew Chem Int Ed 40:3367–3369. doi:10.1002/1521-3773(20010917)40

    Article  CAS  Google Scholar 

  11. Chen Z, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216. doi:10.1149/1.1503202

    Article  CAS  Google Scholar 

  12. Liu L, Chen L, Huang X, Yang X-Q, Yoon W-S, Lee HS, McBreen J (2004) Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc 151:A1344–A1351. doi:10.1149/1.1772781

    Article  CAS  Google Scholar 

  13. Chung KY, Yoon W-S, McBreen J, Yang X-Q, Oh SH, Shin HC, Cho WI, Cho BW (2006) Structural studies on the effects of ZrO2 Coating on LiCoO2 during cycling using in situ X-ray diffraction technique. J Electrochem Soc 153:A2152–A2157. doi:10.1149/1.2338661

    Article  CAS  Google Scholar 

  14. Cho J, Kim T-G, Kim C, Lee J-G, Kim Y-W, Park B (2005) Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J Power Sources 146:58–64. doi:10.1016/j.jpowsour.2005.03.118

    Article  CAS  Google Scholar 

  15. Hwang BJ, Chen CY, Cheng MY, Santhanam R, Ragavendran K (2010) Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J Power Sources 195:4255–4265. doi:10.1016/j.jpowsour.2010.01.040

    Article  CAS  Google Scholar 

  16. Takamatsu D, Mori S, Orikasa Y, Nakatsutsumi T, Koyama Y, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2013) Effects of ZrO2 coating on LiCoO2 thin-film electrode studied by in situ X-ray absorption spectroscopy. J Electrochem Soc 160:A3054–A3060. doi: 10.1149/2.006305jes

    Article  CAS  Google Scholar 

  17. Xu S, Jacobs RM, Nguyen HM, Hao S, Mahanthappa M, Wolverton C, Morgan D (2015) Lithium transport through lithium-ion battery cathode coatings. J Mater Chem A 3:17248–17272. doi:10.1039/C5TA01664A

    Article  CAS  Google Scholar 

  18. Miyashiro H, Yamanaka A, Tabuchi M, Seki S, Nakayama M, Ohno Y, Kobayashi Y, Mita Y, Usami A, Wakihara M (2006) Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. J Electrochem Soc 153:A348–A353. doi:10.1149/1.2149306

    Article  CAS  Google Scholar 

  19. Iriyama Y, Kurita H, Yamada I, Abe T, Ogumi Z (2004) Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode. J Power Sources 137:111–116. doi:10.1016/j.jpowsour.2004.05.029

    Article  CAS  Google Scholar 

  20. Inamoto J, Fukutsuka T, Miyazaki K, Abe T (2017) Investigation of the surface state of LiCoO2 thin-film electrodes using a redox reaction of ferrocene. J Electrochem Soc 164:A555–A559. doi:10.1149/2.0321704jes

    Article  CAS  Google Scholar 

  21. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097. doi:10.1149/1.2221184

    Article  CAS  Google Scholar 

  22. Keramidas VG, White WB (1974) Raman scattering study of the crystallization and phase transformations of ZrO2. J Am Ceram Soc 57:22–24. doi:10.1111/j.1151-2916.1974.tb11355.x

    Article  CAS  Google Scholar 

  23. Inaba M, Iriyama Y, Ogumi Z, Todzuka Y, Tasaka A (1997) A Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J Raman Spectrosc 28:613–617. doi:10.1002/(SICI)1097-4555(199708)28

    Article  CAS  Google Scholar 

  24. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C 21:L199–L201. doi:10.1088/0022-3719/21/7/007

    Article  Google Scholar 

  25. Iriyama Y, Inaba M, Abe T, Ogumi Z (2001) Preparation of c-axis oriented thin films of LiCoO2 by pulsed laser deposition and their electrochemical properties. J Power Sources 94:175–182. doi:10.1016/S0378-7753(00)00580-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CREST, JST (JPMJCR12C1). Funidng was provided by Core Research for Evolutional Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokazu Fukutsuka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inamoto, Ji., Fukutsuka, T., Miyazaki, K. et al. Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction. J Appl Electrochem 47, 1203–1211 (2017). https://doi.org/10.1007/s10800-017-1121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1121-y

Keywords

Navigation