Skip to main content
Log in

Enhanced rate capability and cycling stability of conductive oxide-coated LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High-nickel cathode material has high specific capacity, but the rapid capacity decay restricts its application. Hereby, three conductive oxides including nano-antimony tin oxide (Sb2SnO5, ATO), zinc stannate (Zn2SnO4, ZTO), and antimony-doped zinc stannate (Sb-doped ZTO, AZTO) with high mobility and low resistivity were used as coating materials separately to improve the rate capability and cycling stability of LiNi0.8Co0.1Mn0.1O2 (NCM811). The conductive oxide was uniformly coated on the surface of NCM811 with the thickness of about 4 nm. The AZTO-coated NCM811 shows the superior rate capability with the initial discharge capacities of 201.35, 197.86, 190.80, and 182.31 mAh g−1 at 0.1, 0.2, 0.5, and 1 C, respectively. The ZTO-coated NCM811 has the best cycling stability with the capacity retention of 85.93% after 100 cycles, while that of the pristine NCM811 is 66.75%. The conductive oxides improve the electronic/ionic conductivity and block the reaction between cathode material and electrolyte, reduce the electrochemical impedance and the side reaction, and further increase the rate capability and the reversibility of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. De Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H (2019) Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv Mater 31:1900985

  2. Ray A, Saruhan B (2021) Application of ionic liquids for batteries and supercapacitors. Mater 14:2942

    Article  CAS  Google Scholar 

  3. Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452

    Article  CAS  Google Scholar 

  4. Choi JU, Voronina N, Sun YK, Myung ST (2020) Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow. Adv Energy Mater 10:2002027

    Article  CAS  Google Scholar 

  5. Ryu HH, Park NY, Yoon DR, Kim UH, Yoon CS, Sun YK (2020) New class of Ni-rich cathode materials Li[NixCoyB1−x−y]O2 for next lithium batteries. Adv Energy Mater 10:2000495

    Article  CAS  Google Scholar 

  6. Bi Y, Tao J, Wu Y, Li L, Xu Y, Hu E, Wu B, Hu J, Wang C, Zhang JG, Qi Y, Xiao J (2020) Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370:1313–1317

    Article  CAS  PubMed  Google Scholar 

  7. Ryu HH, Namkoong B, Kim JH, Belharouak I, Yoon CS, Sun YK (2021) Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett 6:2726–2734

    Article  CAS  Google Scholar 

  8. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013

    Article  CAS  Google Scholar 

  9. Nair JR, Colo F, Kazzazi A, Moreno M, Bresser D, Lin RY, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407

    Article  CAS  Google Scholar 

  10. Zhu HL, Shen R, Tang YW, Yan XY, Liu J, Song LB, Fan ZQ, Zheng SL, Chen ZY (2020) Sn-doping and Li2SnO3 nano-coating layer co-modified LiNi0.5Co0.2Mn0.3O2 with improved cycle stability at 4.6 V cut-off voltage. Nanomaterials 10:868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao CZ, Zhao Q, Liu X, Zheng J, Stalin S, Zhang Q, Archer LA (2020) Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv Mater 32:1905629

    Article  CAS  Google Scholar 

  12. Park GT, Ryu HH, Park NY, Yoon CS, Sun YK (2019) Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. J Power Sources 442:227242

    Article  CAS  Google Scholar 

  13. Ryu HH, Park KJ, Yoon CS, Sun YK (2018) Capacity fading of Ni-rich LiNixCoyMn1-x-yO2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation. Chem Mater 30:1155–1163

    Article  CAS  Google Scholar 

  14. Li Q, Dang R, Chen M, Lee Y, Hu Z, Xiao X (2018) Synthesis method for long cycle life lithium-ion cathode material: nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2. ACS Appl Mater Interfaces 10:17850–17860

    Article  CAS  PubMed  Google Scholar 

  15. Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT (2017) Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J Phys Chem C 121:22628–22636

    Article  CAS  Google Scholar 

  16. Pekka P, Hubert G (2018) Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ Sci 11:2306–2309

    Article  Google Scholar 

  17. Li W, Dolocan A, Oh P (2017) Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. J Nat Commun 8:14589

  18. Dl V, Jw L (2018) Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability. J Solid State Electrochem 22:1165–1173

    Article  Google Scholar 

  19. Abe M, Iba H, Suzuki K, Minamishima H, Hirayama M, Tamura K, Mizuki J, Saito T, Ikuhara Y, Kanno R (2017) Study on the deterioration mechanism of layered rock-salt electrodes using epitaxial thin films – Li (Ni Co, Mn)O2 and their Zr-O surface modified electrodes. J Power Sources 345:108–119

    Article  CAS  Google Scholar 

  20. Negi RS, Celik E, Pan R, Staglich R, Senker J (2021) Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries. ACS Appl Energy Mater 4:3369–3380

    Article  CAS  Google Scholar 

  21. Shao Z, Zhao Z, Zhang Y (2015) Preparation and properties of ZnO, MgO and Al2O3 coated LiNi1/3Co1/3-xMn1/3MxO2 (x = 10%) cathode materials. Mater Technol 30:344–348

  22. Du F, Sun P, Zhou Q, Zeng D, Hu D, Fan Z, Hao Q, Mei C, Xu T, Zheng J (2020) Interlinking primary grains with lithium boron oxide to enhance the stability of LiNi0.8Co0.15Al0.05O2. ACS Appl Mater Interfaces 12:56963–56973

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Tang LB, Wei HX, Zhang XH, He ZJ, Li YJ, Zheng JC (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    Article  CAS  Google Scholar 

  24. Somo TR, Mabokela TE, Teffu DM, Sekgobela TK, Ramogayana B, Hato MJ, Modibane KD (2021) A comparative review of metal oxide surface coatings on three families of cathode materials for lithium-ion batteries. Coatings 11:744

    Article  CAS  Google Scholar 

  25. Sclar H, Maiti S, Leifer N, Vishkin N, Fayena-Greenstein M, Hen M, Grinblat J, Talianker M, Solomatin N, Tiurin O (2021) Electrochemical and thermal behavior of modified Li and Mn-rich cathode materials in battery prototypes: impact of pentasodium aluminate coating and comprehensive understanding of its evolution upon cycling through solid-state, nuclear magnetic resonance A. Adv Energy Sustain Res 2:2000089

    Article  CAS  Google Scholar 

  26. Lee S, Li W, Dolocan A, Celio H, Park H, Warner JH, Manthiram A (2021) In-depth analysis of the degradation mechanisms of high-nickel, low/No-cobalt layered oxide cathodes for lithium-ion batteries. Adv Energy Mater 11:2100858

    Article  CAS  Google Scholar 

  27. Kim UH, Park JH, Aishova A, Ribas RM, Monteiro RS, Griffiffiffith KJ, Yoon CS, Sun YK (2021) Microstructure engineered Ni-rich layered cathode for electric vehicle batteries. Adv Energy Mater 11:2100884

    Article  CAS  Google Scholar 

  28. Becker D, Borner M, Nolle R, Diehl M, Klein S, Rodehorst U, Schmuch R, Winter M, Placke T (2019) Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl Mater Interfaces 11:18404–18414

    Article  CAS  PubMed  Google Scholar 

  29. Medhi R, Li CH, Sang HL, Marquez MD, Lee TR (2019) Uniformly spherical and monodisperse antimony- and zinc-doped tin oxide nanoparticles for optical and electronic applications. ACS Appl Nano Mater 2:6554–6564

    Article  CAS  Google Scholar 

  30. Bhat JS, Maddani KI, Karguppikar AM (2006) Influence of Zn doping on electrical and optical properties of multilayered tin oxide thin films. Bull Materials Sci 29:331–337

    Article  CAS  Google Scholar 

  31. Vijayalakshmi S, Venkataraj S, Subramanian M, Jayavel R (2008) Physical properties of zinc doped tin oxide films prepared by spray pyrolysis technique. J Phys D Appl Phys 41:035505

    Article  Google Scholar 

  32. Chandra RD, Rao M, Zhang K, Prabhakar RR, Shi C, Zhang J, Mhaisalkar SG, Mathews N (2014) Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics. ACS Appl Mater Interfaces 6:773–777

    Article  CAS  PubMed  Google Scholar 

  33. Jiang Y, Sun W, Xu B, Yan M, Bahlawane N (2011) Unusual enhancement in electrical conductivity of tin oxide thin films with zinc doping. Phys Chem Chem Phys 13:5760–5763

    Article  CAS  PubMed  Google Scholar 

  34. Lu PF, Shen Y, Yu ZY, Zhao L, Li QY, Ma SJ, Han LH, Liu YM (2012) Electronic structure and optical properties of antimony-doped SnO2 from first-principle study. Commun Theor Phys 57:145–150

    Article  CAS  Google Scholar 

  35. He X, Feng Z, Zhou L (2020) A synchronously dual-conductive coating towards enhancing the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material. J Alloys Compd 852:156966

  36. Liao SY, Huang XW, Rao QS, Li YZ, Hu JQ, Zheng F, Ma ZY, Cui TT, Liu YD, Min YG (2020) A multifunctional MXene additive for enhancing the mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium-ion batteries. J Mater Chem 8:4494–4504

    Article  CAS  Google Scholar 

  37. Christiansen TL, Cooper SR, Jensen KM (2020) There’s no place like real-space: elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis. Nanoscale Adv 2:2234–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu X, Huo H, Jian J, Wang L, Zhu H, Xu S, He X, Yin G, Du C, Sun X (2019) Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium- ion batteries. Adv Energy Mater 9:1803963

    Article  Google Scholar 

  39. Chen ZY, Liu QM, Yan XY, Zhu HL, Liu J, Duan JH, Wang YX (2022) Suppression and mechanism of voltage decay in Sb-doped lithium rich layered oxide cathode materials. J Phys Chem Lett 13:8214–8220

    Article  CAS  PubMed  Google Scholar 

  40. Lee W, Lee D, Kim Y, Choi W, Yoon WS (2020) Enhancing the structural durability of Ni-rich layered materials by post-process: washing and heat-treatment. J Mater Chem A 8:10206–10216

    Article  CAS  Google Scholar 

  41. Shi CG, Shen CH, Peng XX, Luo CX, Shen LF, Sheng WJ, Fan JJ, Wang Q, Zhang SJ, Xu BB, Xian JJ, Wei YM, Huang L, Li JT, Sun SG (2019) A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive. Nano Energy 65:104084

    Article  CAS  Google Scholar 

  42. Hou P, Yin J, Li F, Huang J, Xu X (2019) High-rate and long-life lithium-ion batteries coupling surface-Al3+-enriched LiNi0.7Co0.15Mn0.15O2 cathode with porous Li4Ti5O12 anode. J Chem Eng 378:122057

  43. Yang X, Tang Y, Qu Y, Shang G, Wu J, Zheng J, Lai Y, Li J, Zhang Z (2019) Bifunctional nano-ZrO2 modification of LiNi0.92Co0.08O2 cathode enabling high-energy density lithium ion batteries. J Power Sources 438:226978–226979

  44. Xu M, Chen Z, Li L, Zhu H, Zhao Q, Xu L, Peng N, Gong L (2015) Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide. J Power Sources 281:444–454

    Article  CAS  Google Scholar 

  45. Ahn J, Yoon S, Jung SG, Yim JH, Cho KY (2017) A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. J Mater Chem 5(40):21214–21222

    Article  CAS  Google Scholar 

  46. Tan W, Wang LN, Lu ZG, Yang F, Xu ZH (2022) A hierarchical Si/C nanocomposite of stable conductive network formed through thermal phase separation of asphaltenes for high-performance li-ion batteries. Small 18:35

    Article  Google Scholar 

  47. Zeng XQ, Li M, Abd El-Hady D, Alshitari W, Al-Bogami AS, Lu J, Amine K (2019) Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 9:1900161

    Article  Google Scholar 

  48. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  PubMed  Google Scholar 

  49. Shi Y, Zhang M, Fang C, Meng YS (2018) Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Power Sources 394:114–121

  50. Hu GR, Zhang MF, Wu LL, Peng ZD, Du K, Cao YB (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries. J Alloys Compd 690:589–597

  51. Xu C, Xiang W, Wu Z, Qiu L, Ming Y, Yang W, Yue L, Zhang J, Zhong B, Guo X (2021) Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. Chem Eng J 403:126314

    Article  CAS  Google Scholar 

  52. Shen R, Zhu HL, Liu J, Zhu MD, Guo JM, Song LB, Bie XF, Ji Y, Chen ZY (2021) Improved electrochemical performance of Al2O3-coated @ K and Cl dual-doped LiNi0.5Co0.2Mn0.3O2 cathode materials at high cut-off voltage. J Electron Mater 50:5721–5731

  53. Duan H, Fan M, Chen W, Li J, Wang P, Wang W, Shi J, Yin Y, Wan L, Guo Y (2019) Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater 31:1807789

    Article  Google Scholar 

  54. Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S (2019) Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57

    Article  CAS  Google Scholar 

  55. Zhong S, Lai M, Yao W, Li Z (2016) Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries. Electrochim Acta 212:343–351

  56. Xie DJ, Li GS, Li Q, Fu CC, Fan JM, Li LP (2016) Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochim Acta 196:505–516

    Article  CAS  Google Scholar 

  57. Zhang X, Liu G, Zhou K, Jiao T, Zou Y, Wu Q, Chen X, Yang Y, Zheng J (2021) Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive-pentafluoropyridine. Energy Mater 1:100005

    Article  Google Scholar 

  58. Chang H, Wu YR, Han X, Yi TF (2021) Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 1:100003

    Article  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Fund of Changsha Science and Technology Bureau, Hunan, China (grant number kh2003021); the Scientific Research Foundation of Hunan Provincial Education Department, China (grant number 19B010); the National Natural Science Foundation of Hunan Province, China (grant number 2020JJ4620); and the National Natural Science Foundation of China (grant numbers 51604042 and 51874048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-li Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 528 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Md., Zhu, Hl., Guo, Jm. et al. Enhanced rate capability and cycling stability of conductive oxide-coated LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. Ionics 29, 1711–1720 (2023). https://doi.org/10.1007/s11581-023-04945-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04945-9

Keywords

Navigation