Journal of Applied Electrochemistry

, Volume 47, Issue 7, pp 767–775 | Cite as

Influence of additives fluoride and phosphate on the electrochemical performance of Mg–MnO2 battery

  • Jing Xu
  • Qiaoling Yang
  • Chunli Huang
  • Muhammad Sufyan Javed
  • Muhammad Kashif Aslam
  • Changguo Chen
Research Article
Part of the following topical collections:
  1. Batteries

Abstract

Magnesium (Mg) is a promising anode material for primary Mg batteries because of its outstanding characteristics, such as abundance, light weight, and low cost. However, self-corrosion and delayed action of Mg alloy in aqueous solution limit its performance and reduce the energy density. In this work, the influence of NaF–Na3PO4 on electrochemical behaviors of Mg alloy in composite solution is studied by electrochemical impedance spectroscopy, galvanostatic discharge, and linear sweep voltammetry. The morphology and microstructure are analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. Impedance studies show that NaF and Na3PO4 are good inhibitors with the inhibition efficiency reaches 98.8%. Moreover, the delayed time is reduced to 0.08 s, despite that soaking time length is extended to 16 days. A Mg–MnO2 cell demonstrates an excellent discharge capacity of 1539 mAh g−1 at the discharge current density of 5 mA cm−2.

Graphical abstract

Schematic diagram of the assembly of Mg–MnO2 battery
Galvanostatic (5 mA cm−2) discharge curves for Mg–MnO2 batteries in different solutions without (a) and with (b) NaF–Na3PO4. The delayed time is reduced and the anodic specific capacity is enhanced to 1539 mAh g−1 by the addition of NaF and Na3PO4.

Keywords

Mg–MnO2 battery Electrolyte additives Inhibition efficiency Delayed action Specific capacity 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21273292).

Supplementary material

10800_2017_1074_MOESM1_ESM.docx (143 kb)
Supplementary material 1 (DOCX 143 kb)

References

  1. 1.
    Wang N, Wang R, Peng C, Hu C, Feng Y, Peng B (2014) Research progress of magnesium anodes and their applications in chemical power sources. T Nonferr Metal Soc 24(8):2427–2439CrossRefGoogle Scholar
  2. 2.
    Narthana K, kumar RN, Saminathan K, Siva P, Selvam M, Saha P (2016) Enhancement of discharge capacity of Mg/MnO2 primary cell with nano-MnO2-graphene as cathode. Int J Res Adv Eng 2(5):1–19Google Scholar
  3. 3.
    Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnol 5:1291–1311CrossRefGoogle Scholar
  4. 4.
    Zhao J, Yu K, Hu Y, Li S, Tan X, Chen F, Yu Z (2011) Discharge behavior of Mg-4 wt%Ga-2 wt%Hg alloy as anode for seawater activated battery. Electrochim Acta 56(24):8224–8231CrossRefGoogle Scholar
  5. 5.
    Cao D, Wu L, Sun Y, Wang G, Lu Y (2008) Electrochemical behavior of Mg−Li, Mg−Li−Al and Mg−Li−Al−Ce in sodium chloride solution. J Power Sour 177(2):624–630CrossRefGoogle Scholar
  6. 6.
    Gofer Y, Pour N, Aurbach D (2013) Electrolytic solutions for rechargeable magnesium batteries. Lithium batteries: advanced technologies and applications. Wiley, Weinheim, pp 328–345Google Scholar
  7. 7.
    Zhang RG, Yu XQ, Chen L, Yang XQ (2012) α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun 23:110–113CrossRefGoogle Scholar
  8. 8.
    Pan GX, Cao F, Xia XH, Zhang YJ (2016) Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sour 332:383–388CrossRefGoogle Scholar
  9. 9.
    Qin LP, Liang SQ, Tan XP, Pan AQ (2017) Zn2SnO4/graphene composites as anode materials for high performance lithium-ion batteries. J Alloys Compd 692:124–130CrossRefGoogle Scholar
  10. 10.
    Xu J, Yang OL, Javed MS, Gong YL, Aslam MK, Chen CG (2017) The effects of NaF concentration on electrochemical and corrosion behavior of AZ31B magnesium alloy in a composite electrolyte. RSC Adv 7:5880–5887CrossRefGoogle Scholar
  11. 11.
    Yang OL, Xu J, Chen L, Gong YL, Sun XZ, Chen CG (2017) The effects of NaHCO3 on the voltage delay of Mg Cell with AZ31B magnesium alloy in Mg(ClO4)2 electrolytic solution. J Electrochem Soc 164:A630–A637CrossRefGoogle Scholar
  12. 12.
    Guduru RK, Icaza JC (2016) A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6(3):41CrossRefGoogle Scholar
  13. 13.
    Li CS, Cheng FY, Ji WQ, Tao ZL, Chen J (2009) Magnesium microspheres and nanospheres: morphologycontrolled synthesis and application in Mg/MnO2 batteries. Nano Res 2:713–721CrossRefGoogle Scholar
  14. 14.
    Miao XW, Yang J, Pan WJ, Yuan HC, Nuli YN (2016) Graphite fluoride as a cathode material for primary magnesium batteries with high energy density. Electrochim Acta 210:704–711CrossRefGoogle Scholar
  15. 15.
    Vuorilehto K (2003) An environmentally friendly water-activated manganese dioxide battery. J Appl Electrochem 33:15–21CrossRefGoogle Scholar
  16. 16.
    Chen L, Chen CG, Guo CZ (2014) Research progress of voltage delay in magnesium battery. J Mater Chem 59(17):1936–1941Google Scholar
  17. 17.
    Udhayan R, Bhatt DP (1996) On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. J Power Sour 63:103–107CrossRefGoogle Scholar
  18. 18.
    Shi YG, Zhang Y, Hu SF, Chen QR (2012) Electrochemical behavior of AZ31 alloy as anode material for magnesium battery. Corros Prot 33:1051–1054Google Scholar
  19. 19.
    Heakal FE, Tantawy NS, Shehata OS (2012) Impact of chloride and fluoride additions on surface reactivity and passivity of AM60 magnesium alloy in buffer solution. Corros Sci 64:153–163CrossRefGoogle Scholar
  20. 20.
    Niu LY, Jiang ZH, Li GY, Gu CD, Lian JS (2006) A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf Coat Technol 200(9):3021–3026CrossRefGoogle Scholar
  21. 21.
    Du J, Wang Z, Niu Y (2014) Double liquid electrolyte for primary Mg batteries. J Power Sour 247:840–844CrossRefGoogle Scholar
  22. 22.
    Mu WY, Li ZX, Du JH (2011) Development and application of magnesium batteries. Mater Rev 25:35–39Google Scholar
  23. 23.
    Chen CG, Chen H, Liu YP (2011) Electrochemical behavior of composite Mg-Zn anode. Chin J Power Sour 35:63–65 (in Chinese) Google Scholar
  24. 24.
    Qiang YJ, Zhang ST, Xu SY, Yin LL (2015) The effect of 5-nitroindazole as an inhibitor for the corrosion of copper in a 3.0% NaCl solution. Rsc Adv 5:63866–63873CrossRefGoogle Scholar
  25. 25.
    Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304CrossRefGoogle Scholar
  26. 26.
    Huo HW, Ying L, Wang FH (2004) Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros Sci 46:1467–1477CrossRefGoogle Scholar
  27. 27.
    Yong ZY, Zhu J, Cheng Q, Liu YL (2008) Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection. Appl Surf Sci 255(5):1672–1680CrossRefGoogle Scholar
  28. 28.
    Santamaria M, Quarto FD, Zanna S, Marcus P (2007) Initial surface film on magnesium metal: a characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS). Electrochim Acta 53:1314–1324CrossRefGoogle Scholar
  29. 29.
    Wang MJ, Li CF, Yen SK (2016) Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance. Corros Sci 76:142–153CrossRefGoogle Scholar
  30. 30.
    Song XM, Yu G, Yi HB, Ye LY, Hu BN (2010) Phosphate-silicate composite coating formed on AM60 magnesium alloy. Surf Eng 26(5):371–377CrossRefGoogle Scholar
  31. 31.
    Baril G, Galicia G, Deslouis C, Pébère N, Tribollet B, Vivier V (2017) J Electrochem Soc 154(2):C108–C113CrossRefGoogle Scholar
  32. 32.
    Qiang YJ, Zhang ST, Guo L, Zheng XW, Xiang B, Chen SJ (2017) Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros Sci. doi: 10.1016/j.corsci.2017.02.021

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Department of Applied PhysicsChongqing UniversityChongqingPeople’s Republic of China
  3. 3.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations