Skip to main content

Advertisement

Log in

Influence of additives fluoride and phosphate on the electrochemical performance of Mg–MnO2 battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Magnesium (Mg) is a promising anode material for primary Mg batteries because of its outstanding characteristics, such as abundance, light weight, and low cost. However, self-corrosion and delayed action of Mg alloy in aqueous solution limit its performance and reduce the energy density. In this work, the influence of NaF–Na3PO4 on electrochemical behaviors of Mg alloy in composite solution is studied by electrochemical impedance spectroscopy, galvanostatic discharge, and linear sweep voltammetry. The morphology and microstructure are analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. Impedance studies show that NaF and Na3PO4 are good inhibitors with the inhibition efficiency reaches 98.8%. Moreover, the delayed time is reduced to 0.08 s, despite that soaking time length is extended to 16 days. A Mg–MnO2 cell demonstrates an excellent discharge capacity of 1539 mAh g−1 at the discharge current density of 5 mA cm−2.

Graphical abstract

Schematic diagram of the assembly of Mg–MnO2 battery

Galvanostatic (5 mA cm−2) discharge curves for Mg–MnO2 batteries in different solutions without (a) and with (b) NaF–Na3PO4. The delayed time is reduced and the anodic specific capacity is enhanced to 1539 mAh g−1 by the addition of NaF and Na3PO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang N, Wang R, Peng C, Hu C, Feng Y, Peng B (2014) Research progress of magnesium anodes and their applications in chemical power sources. T Nonferr Metal Soc 24(8):2427–2439

    Article  CAS  Google Scholar 

  2. Narthana K, kumar RN, Saminathan K, Siva P, Selvam M, Saha P (2016) Enhancement of discharge capacity of Mg/MnO2 primary cell with nano-MnO2-graphene as cathode. Int J Res Adv Eng 2(5):1–19

    Google Scholar 

  3. Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnol 5:1291–1311

    Article  Google Scholar 

  4. Zhao J, Yu K, Hu Y, Li S, Tan X, Chen F, Yu Z (2011) Discharge behavior of Mg-4 wt%Ga-2 wt%Hg alloy as anode for seawater activated battery. Electrochim Acta 56(24):8224–8231

    Article  CAS  Google Scholar 

  5. Cao D, Wu L, Sun Y, Wang G, Lu Y (2008) Electrochemical behavior of Mg−Li, Mg−Li−Al and Mg−Li−Al−Ce in sodium chloride solution. J Power Sour 177(2):624–630

    Article  CAS  Google Scholar 

  6. Gofer Y, Pour N, Aurbach D (2013) Electrolytic solutions for rechargeable magnesium batteries. Lithium batteries: advanced technologies and applications. Wiley, Weinheim, pp 328–345

    Google Scholar 

  7. Zhang RG, Yu XQ, Chen L, Yang XQ (2012) α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun 23:110–113

    Article  CAS  Google Scholar 

  8. Pan GX, Cao F, Xia XH, Zhang YJ (2016) Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J Power Sour 332:383–388

    Article  CAS  Google Scholar 

  9. Qin LP, Liang SQ, Tan XP, Pan AQ (2017) Zn2SnO4/graphene composites as anode materials for high performance lithium-ion batteries. J Alloys Compd 692:124–130

    Article  CAS  Google Scholar 

  10. Xu J, Yang OL, Javed MS, Gong YL, Aslam MK, Chen CG (2017) The effects of NaF concentration on electrochemical and corrosion behavior of AZ31B magnesium alloy in a composite electrolyte. RSC Adv 7:5880–5887

    Article  CAS  Google Scholar 

  11. Yang OL, Xu J, Chen L, Gong YL, Sun XZ, Chen CG (2017) The effects of NaHCO3 on the voltage delay of Mg Cell with AZ31B magnesium alloy in Mg(ClO4)2 electrolytic solution. J Electrochem Soc 164:A630–A637

    Article  CAS  Google Scholar 

  12. Guduru RK, Icaza JC (2016) A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6(3):41

    Article  Google Scholar 

  13. Li CS, Cheng FY, Ji WQ, Tao ZL, Chen J (2009) Magnesium microspheres and nanospheres: morphologycontrolled synthesis and application in Mg/MnO2 batteries. Nano Res 2:713–721

    Article  CAS  Google Scholar 

  14. Miao XW, Yang J, Pan WJ, Yuan HC, Nuli YN (2016) Graphite fluoride as a cathode material for primary magnesium batteries with high energy density. Electrochim Acta 210:704–711

    Article  CAS  Google Scholar 

  15. Vuorilehto K (2003) An environmentally friendly water-activated manganese dioxide battery. J Appl Electrochem 33:15–21

    Article  CAS  Google Scholar 

  16. Chen L, Chen CG, Guo CZ (2014) Research progress of voltage delay in magnesium battery. J Mater Chem 59(17):1936–1941

    Google Scholar 

  17. Udhayan R, Bhatt DP (1996) On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. J Power Sour 63:103–107

    Article  CAS  Google Scholar 

  18. Shi YG, Zhang Y, Hu SF, Chen QR (2012) Electrochemical behavior of AZ31 alloy as anode material for magnesium battery. Corros Prot 33:1051–1054

    CAS  Google Scholar 

  19. Heakal FE, Tantawy NS, Shehata OS (2012) Impact of chloride and fluoride additions on surface reactivity and passivity of AM60 magnesium alloy in buffer solution. Corros Sci 64:153–163

    Article  Google Scholar 

  20. Niu LY, Jiang ZH, Li GY, Gu CD, Lian JS (2006) A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surf Coat Technol 200(9):3021–3026

    Article  CAS  Google Scholar 

  21. Du J, Wang Z, Niu Y (2014) Double liquid electrolyte for primary Mg batteries. J Power Sour 247:840–844

    Article  CAS  Google Scholar 

  22. Mu WY, Li ZX, Du JH (2011) Development and application of magnesium batteries. Mater Rev 25:35–39

    CAS  Google Scholar 

  23. Chen CG, Chen H, Liu YP (2011) Electrochemical behavior of composite Mg-Zn anode. Chin J Power Sour 35:63–65 (in Chinese)

    Google Scholar 

  24. Qiang YJ, Zhang ST, Xu SY, Yin LL (2015) The effect of 5-nitroindazole as an inhibitor for the corrosion of copper in a 3.0% NaCl solution. Rsc Adv 5:63866–63873

    Article  CAS  Google Scholar 

  25. Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304

    Article  CAS  Google Scholar 

  26. Huo HW, Ying L, Wang FH (2004) Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros Sci 46:1467–1477

    Article  CAS  Google Scholar 

  27. Yong ZY, Zhu J, Cheng Q, Liu YL (2008) Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection. Appl Surf Sci 255(5):1672–1680

    Article  CAS  Google Scholar 

  28. Santamaria M, Quarto FD, Zanna S, Marcus P (2007) Initial surface film on magnesium metal: a characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS). Electrochim Acta 53:1314–1324

    Article  CAS  Google Scholar 

  29. Wang MJ, Li CF, Yen SK (2016) Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance. Corros Sci 76:142–153

    Article  Google Scholar 

  30. Song XM, Yu G, Yi HB, Ye LY, Hu BN (2010) Phosphate-silicate composite coating formed on AM60 magnesium alloy. Surf Eng 26(5):371–377

    Article  CAS  Google Scholar 

  31. Baril G, Galicia G, Deslouis C, Pébère N, Tribollet B, Vivier V (2017) J Electrochem Soc 154(2):C108–C113

    Article  Google Scholar 

  32. Qiang YJ, Zhang ST, Guo L, Zheng XW, Xiang B, Chen SJ (2017) Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros Sci. doi:10.1016/j.corsci.2017.02.021

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21273292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changguo Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yang, Q., Huang, C. et al. Influence of additives fluoride and phosphate on the electrochemical performance of Mg–MnO2 battery. J Appl Electrochem 47, 767–775 (2017). https://doi.org/10.1007/s10800-017-1074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1074-1

Keywords

Navigation