Skip to main content
Log in

A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new strategy based on gold nanoparticles (AuNPs), poly(2,6-pyridinedicarboxylic acid) (P(PDA)), and a graphene oxide (GO)-modified glassy carbon electrode (GCE/AuNPs/P(PDA)-GO) for the simultaneous electrochemical determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) was proposed in this study. The composite electrode was characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The GCE/AuNPs/P(PDA)/GO exhibited good electrochemical behavior towards the electrocatalysis of AA, DA, and UA due to the synergistic effects between P(PDA), GO, and AuNPs. The electro-oxidation signals appeared as three clearly seperated peaks with remarkable peak potential differences of 0.161 V (AA–DA), 0.336 V (AA–UA), and 0.175 V (DA–UA). The linear responses of AA, DA, and UA were in the concentration ranges of 6.0 to 2400.0, 0.05 to 100.0, and 0.5 to 150.0 µmol L‒1 with the detection limits of 1.764, 0.017, and 0.160 µmol L‒1, respectively. The sensor was used for the voltammetric determination of AA, DA, and UA in human urine samples using the standard addition method with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang M, Liu K, Xiang L, Lin Y, Su L, Mao L (2007) Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem 79(17):6559–6565. doi:10.1021/ac0705871

    Article  CAS  Google Scholar 

  2. Motahary M, Ghoreishi SM, Behpour M, Golestaneh M (2010) Electrochemical determination of ascorbic acid at the surface of a graphite electrode modified with multi-walled carbon nanotubes/tetradecyltrimethylammonium bromide. J Appl Electrochem 40(4):841–847. doi:10.1007/s10800-009-0067-0

    Article  CAS  Google Scholar 

  3. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Analytical Chemistry 60(13):769A–779 A. doi:10.1021/ac00164a001

    Article  CAS  Google Scholar 

  4. Liu X, Zhang L, Wei S, Chen S, Ou X, Lu Q (2014) Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron 57:232–238. doi:10.1016/j.bios.2014.02.017

    Article  CAS  Google Scholar 

  5. Niu X, Yang W, Guo H, Ren J, Yang F, Gao J (2012) A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. Talanta 99:984–988. doi:10.1016/j.talanta.2012.07.077

    Article  CAS  Google Scholar 

  6. Zhang G, He P, Feng W, Ding S, Chen J, Li L, He H, Zhang S, Dong F (2016) Carbon nanohorns/poly(glycine) modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of uric acid, dopamine and ascorbic acid. J Electroanal Chem 760:24–31. doi:10.1016/j.jelechem.2015.11.035

    Article  CAS  Google Scholar 

  7. Ramesh P, Suresh GS, Sampath S (2004) Selective determination of dopamine using unmodified, exfoliated graphite electrodes. J Electroanal Chem 561:173–180. doi:10.1016/j.jelechem.2003.08.002

    Article  CAS  Google Scholar 

  8. Wang Y, Bi C (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using poly (tyrosine)/functionalized multi-walled carbon nanotubes composite film modified electrode. J Mol Liq 177:26–31. doi:10.1016/j.molliq.2012.10.009

    Article  CAS  Google Scholar 

  9. Wang Y (2011) Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf B 88(2):614–621. doi:10.1016/j.colsurfb.2011.07.051

    Article  CAS  Google Scholar 

  10. Ergün E, Kart Ş, Zeybek DK, Zeybek B (2016) Simultaneous electrochemical determination of ascorbic acid and uric acid using poly(glyoxal-bis(2-hydroxyanil)) modified glassy carbon electrode. Sens Actuators B 224:55–64. doi:10.1016/j.snb.2015.10.032

    Article  Google Scholar 

  11. Troiani EdP, Faria RC (2013) Cathodically pretreated poly(1-aminoanthraquinone)-modified electrode for determination of ascorbic acid, dopamine, and uric acid. J Appl Electrochem 43(9):919–926. doi:10.1007/s10800-013-0577-7

    Article  Google Scholar 

  12. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40(1):44–56. doi:10.1039/B821763G

    Article  CAS  Google Scholar 

  13. Thiagarajan S, Chen S-M (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74(2):212–222. doi:10.1016/j.talanta.2007.05.049

    Article  CAS  Google Scholar 

  14. Huang J, Liu Y, Hou H, You T (2008) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron 24(4):632–637. doi:10.1016/j.bios.2008.06.011

    Article  CAS  Google Scholar 

  15. Latif-ur-Rahman, Shah A, Khan SB, Asiri AM, Hussain H, Han C, Qureshi R, Ashiq MN, Zia MA, Ishaq M, Kraatz H-B (2015) Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J Appl Electrochem 45(5):463–472. doi:10.1007/s10800-015-0807-2

    Article  CAS  Google Scholar 

  16. Rahman L-u, Shah A, Lunsford SK, Han C, Nadagouda MN, Sahle-Demessie E, Qureshi R, Khan MS, Kraatz H-B, Dionysiou DD (2015) Monitoring of 2-butanone using a Ag-Cu bimetallic alloy nanoscale electrochemical sensor. RSC Adv 5(55):44427–44434. doi:10.1039/C5RA03633J

    Article  CAS  Google Scholar 

  17. Latif-ur-Rahman, Shah A, Qureshi R, Khan SB, Asiri AM, Shah A-u-HA, Ishaq M, Khan MS, Lunsford SK, Zia MA (2015) Spectroscopic Analysis of Au-Cu Alloy Nanoparticles of Various Compositions Synthesized by a Chemical Reduction Method. Adv Mater Sci Eng. doi:10.1155/2015/638629

    Google Scholar 

  18. Cui R, Wang X, Zhang G, Wang C (2012) Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sens Actuators B 161(1):1139–1143. doi:10.1016/j.snb.2011.11.040

    Article  CAS  Google Scholar 

  19. Zhou M, Guo S (2015) Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem 7(18):2744–2764. doi:10.1002/cctc.201500198

    Article  CAS  Google Scholar 

  20. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2013) Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull 46(3):137–144. doi:10.1007/s13404-013-0090-0

    Article  Google Scholar 

  21. Cui F, Zhang X (2012) Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 669:35–41. doi:10.1016/j.jelechem.2012.01.021

    Article  CAS  Google Scholar 

  22. Chen X, Zhang G, Shi L, Pan S, Liu W, Pan H (2016) Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater Sci Eng 65:80–89. doi:10.1016/j.msec.2016.03.106

    Article  CAS  Google Scholar 

  23. Johra FT, Lee J-W, Jung W-G (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20(5):2883–2887. doi:10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  24. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 85:295–301. doi:10.1016/j.electacta.2012.08.099

    Article  CAS  Google Scholar 

  25. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161. doi:10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  26. Kesavan S, Abraham John S (2016) Stable determination of paracetamol in the presence of uric acid in human urine sample using melamine grafted graphene modified electrode. J Electroanal Chem 760:6–14. doi:10.1016/j.jelechem.2015.11.039

    Article  CAS  Google Scholar 

  27. Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng 70(Part 1):241–249. doi:10.1016/j.msec.2016.08.078

    Article  CAS  Google Scholar 

  28. Tığ GA, Zeybek B, Pekyardımcı Ş (2016) Electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode for the determination of anticancer drug gemcitabine. Talanta 154:312–321. doi:10.1016/j.talanta.2016.03.049

    Article  Google Scholar 

  29. Cui L, Ai S, Shang K, Meng X, Wang C (2011) Electrochemical determination of NADH using a glassy carbon electrode modified with Fe3O4 nanoparticles and poly-2,6-pyridinedicarboxylic acid, and its application to the determination of antioxidant capacity. Microchimica Acta 174(1):31–39. doi:10.1007/s00604-011-0594-3

    Article  CAS  Google Scholar 

  30. Pham TA, Kim JS, Kim JS, Jeong YT (2011) One-step reduction of graphene oxide with l-glutathione. Colloids Surf A 384(1–3):543–548. doi:10.1016/j.colsurfa.2011.05.019

    Article  CAS  Google Scholar 

  31. Saberi R-S, Shahrokhian S, Marrazza G (2013) Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles. Electroanalysis 25(6):1373–1380. doi:10.1002/elan.201200434

    Article  CAS  Google Scholar 

  32. Hui N, Wang S, Xie H, Xu S, Niu S, Luo X (2015) Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sens Actuators B 221:606–613. doi:10.1016/j.snb.2015.07.011

    Article  CAS  Google Scholar 

  33. Ahammad AJS, Rahman MM, Xu G-R, Kim S, Lee J-J (2011) Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode. Electrochim Acta 56(14):5266–5271. doi:10.1016/j.electacta.2011.03.004

    Article  CAS  Google Scholar 

  34. Zhao S, Zhang K, Bai Y, Yang W, Sun C (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69(2):158–163. doi:10.1016/j.bioelechem.2006.01.001

    Article  CAS  Google Scholar 

  35. Wang J (2006) Study of electrode reactions and interfacial properties. In: Analytical electrochemistry, Wiley, Hoboken, pp 29–66. doi:10.1002/0471790303.ch2

    Chapter  Google Scholar 

  36. Yao Y, Shiu K-K (2007) Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal Bioanal Chem 387(1):303–309. doi:10.1007/s00216-006-0924-1

    Article  CAS  Google Scholar 

  37. Istrate O-M, Rotariu L, Marinescu VE, Bala C (2016) NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sens Actuators B 223:697–704. doi:10.1016/j.snb.2015.09.142

    Article  CAS  Google Scholar 

  38. Yang J, Yang T, Feng Y, Jiao K (2007) A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem 365(1):24–30. doi:10.1016/j.ab.2006.12.039

    Article  CAS  Google Scholar 

  39. Liu X, Ou X, Lu Q, Zhang J, Chen S, Wei S (2014) Electrochemical sensor based on overoxidized dopamine polymer and 3,4,9,10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Adv 4(80):42632–42637. doi:10.1039/C4RA05853D

    Article  CAS  Google Scholar 

  40. Wang C, Zou X, Zhao X, Wang Q, Tan J, Yuan R (2015) Cu-nanoparticles incorporated overoxidized-poly(3-amino-5-mercapto-1,2,4-triazole) film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electroanal Chem 741:36–41. doi:10.1016/j.jelechem.2015.01.014

    Article  CAS  Google Scholar 

  41. Hu G, Ma Y, Guo Y, Shao S (2008) Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim Acta 53(22):6610–6615. doi:10.1016/j.electacta.2008.04.054

    Article  CAS  Google Scholar 

  42. Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66(1):51–57. doi:10.1016/j.talanta.2004.09.019

    Article  CAS  Google Scholar 

  43. Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MMF (2012) Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta 93:79–85. doi:10.1016/j.talanta.2012.01.047

    Article  CAS  Google Scholar 

  44. Mocak J, Bond AM, Mitchell S, Scollary G (1997) A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (Technical Report). Pure Appl Chem, 69. doi:10.1351/pac199769020297

  45. Wang C, Du J, Wang H, Zou Ce, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 204:302–309. doi:10.1016/j.snb.2014.07.077

    Article  CAS  Google Scholar 

  46. Wang S, Zhang W, Zhong X, Chai Y, Yuan R (2015) Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods 7(4):1471–1477. doi:10.1039/C4AY02086C

    Article  CAS  Google Scholar 

  47. Yan J, Liu S, Zhang Z, He G, Zhou P, Liang H, Tian L, Zhou X, Jiang H (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. Colloids Surf B 111:392–397. doi:10.1016/j.colsurfb.2013.06.030

    Article  CAS  Google Scholar 

  48. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306. doi:10.1016/j.bios.2014.01.037

    Article  CAS  Google Scholar 

  49. Yao H, Sun Y, Lin X, Tang Y, Huang L (2007) Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta 52(20):6165–6171. doi:10.1016/j.electacta.2007.04.013

    Article  CAS  Google Scholar 

  50. Zhang X, Zhang Y-C, Ma L-X (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 227:488–496. doi:10.1016/j.snb.2015.12.073

    Article  CAS  Google Scholar 

  51. Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82:119–126. doi:10.1016/j.bios.2016.03.074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Assoc. Prof. Dr. Bülent Zeybek for supplying graphene oxide powder. This work was supported by the Ankara University Research Fund (BAP, Grant No. 16H0430016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Aydoğdu Tığ.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydoğdu Tığ, G., Günendi, G. & Pekyardımcı, Ş. A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J Appl Electrochem 47, 607–618 (2017). https://doi.org/10.1007/s10800-017-1060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1060-7

Keywords

Navigation