Skip to main content
Log in

Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A method of electrochemical oxidation and dispersion of tin electrodes under alternating pulse current was proposed as a novel approach for the synthesis of SnO2 nanoparticles suitable as an alternative anode for lithium ion batteries. The electrochemically obtained, non-hydrated SnO2 nanopowder was crystalline, having a tetragonal lattice and an average crystallite size of about 11–16 nm. When used as anode in lithium ion batteries, the material delivered around 680 mAh g−1 reversible capacity with 66 % capacity retention over more than 60 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141

    Article  CAS  Google Scholar 

  2. Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  Google Scholar 

  3. Hu R, Liu H, Zeng M, Liu J, Zhu M (2012) Progress on Sn-based thin-film anode materials for lithium-ion batteries. Chin Sci Bull 57:4119–4130

    Article  CAS  Google Scholar 

  4. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  CAS  Google Scholar 

  5. Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893

    Article  CAS  Google Scholar 

  6. Chen JS, Archer LA, Lou XWD (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924

    Article  CAS  Google Scholar 

  7. Ding S, Luan D, Boey FYC, Chen JS, Lou XWD (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157

    Article  CAS  Google Scholar 

  8. Zhao K, Du G, Qin G, Liu Y, Zhao H (2015) Facile synthesis of boscage-like SnO2 nanorods by hydrothermal method. Mater Lett 141:351–354

    Article  CAS  Google Scholar 

  9. Madzlan Aziz A, Abbas SS, Baharom WRW (2013) Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Mat Lett 91:31–34

    Article  Google Scholar 

  10. Köse H, Aydin AO, Akbulut H (2013) Sol–gel preparation and electrochemical characterization of SnO2/MWCNTs anode materials for Li-ion batteries. Appl Surf Sci 275:160–167

    Article  Google Scholar 

  11. Kamali AR, Fray DJ (2012) Solid phase growth of tin oxide nanostructures. Mater Sci Eng B 177:819–825

    Article  CAS  Google Scholar 

  12. Zhang JB, Li XN, Bai SL, Luo RX, Chen AF, Lin Y (2012) High-yield synthesis of SnO2 nanobelts by water-assisted chemical vapour deposition for sensor applications. Mater Res Bull 47:3277–3282

    Article  CAS  Google Scholar 

  13. Wang B, Yang YH, Wang CX, Xu NS, Yang GW (2005) Field emission and photoluminescence of SnO2 nanograss. J Appl Phys 98:124–303

    Google Scholar 

  14. Rajendran V, Anandan K (2012) Size, morphology and optical properties of SnO2 nanoparticles synthesized by facile surfactant-assisted solvothermal processing. Mater Sci Semicond Process 15:393–400

    Article  CAS  Google Scholar 

  15. Chen D, Gao L (2004) Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J Colloid Interface Sci 279:137–142

    Article  CAS  Google Scholar 

  16. Petrii A (2015) Electrosynthesis of nanostructures and nanomaterials. Russ Chem Rev 84:159–193

    Article  CAS  Google Scholar 

  17. Chen W, Ghosh D, Chen S (2008) Large-scale electrochemical synthesis of SnO2 nanoparticles. J Mater Sci 43:5291–5299

    Article  CAS  Google Scholar 

  18. Korobochkin VV, Balmashnov MA, Gorlushko DA, Usoltseva NV, Bochkareva VV (2012) The phase composition of nanodispersed tin oxides obtained by alternating current electrochemical synthesis. Sib J Sci 1:45–51

    Google Scholar 

  19. Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed 50:6346–6350

    Article  CAS  Google Scholar 

  20. Kabanov BN, Astakhov II, Kiseleva IG (1965) Electrochemical implantation of alkali metals. Russ Chem, Rev 34(10):775–785

    Article  Google Scholar 

  21. Kabanov BN (1968) Incorporation of alkali metals into solid cathodes. Electrochim Acta 13:19–25

    Article  CAS  Google Scholar 

  22. Leontyev I, Kuriganova A, Kudryavtsev Yu, Dkhil B, Smirnova N (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal A 431:120–125

    Article  Google Scholar 

  23. Smirnova NV, Kuriganova AB, Leontyeva DV, Leontyev IN, Mikheikin AS (2013) Structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262

    Article  CAS  Google Scholar 

  24. Leontyeva DV, Leontyev IN, Avramenko MV, Yuzyuk YuI, Kukushkina YuA, Smirnova NV (2013) Electrochemical dispersion as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application. Electrochim Acta 114:356–362

    Article  CAS  Google Scholar 

  25. Díaz R, Díez-Pérez I, Gorostiza P, Sanz F, Morante JR (2003) An electrochemical study of tin oxide thin film in borate buffer solutions. J Braz Chem Soc 14:523–529

    Article  Google Scholar 

  26. Morgan Tench D, Anderson DP, Kim P (1994) Solderability assessment via sequential electrochemical reduction analysis. J Appl Electrochem 24:18–29

    Article  Google Scholar 

  27. Cho S, Yu J, Kang SK, Shin D-Y (2005) Oxidation study of pure tin and its alloys via electrochemical reduction analysis. J Electron Mater 34:635–642

    Article  CAS  Google Scholar 

  28. Alvarez PE, Ribotta SB, Folquer ME, Gervasi CA, Vilche JR (2002) Potentiodynamic behaviour of tin in different buffer solutions. Corros Sci 44:49–65

    Article  CAS  Google Scholar 

  29. Nathira Begum S, Basha A, Muralidharan VS, Lee CW (2012) Electrochemical behaviour of tin in alkali solutions containing halides. Mater Chem Phys 132:1048–1052

    Article  Google Scholar 

  30. Kapusta SD, Hackerman N (1980) Anodic passivation of tin in slightly alkaline solutions. Electrochim Acta 25:1625–1639

    Article  CAS  Google Scholar 

  31. Abdel Wahab FM, Asdel Kader JM, El Shayeb HA, Shamsel Din AM (1978) On the pitting corrosion of tin in aqueous solutions. Corros Sci 18:997–1009

    Article  CAS  Google Scholar 

  32. Ayeshamariam A, Sanjeeviraja C, Perumal Samy R (2013) Synthesis, structural and optical characterizations of SnO2 nanoparticles. J Photonics Spintron 2:4–8

    CAS  Google Scholar 

  33. Gracia L, Beltran A, Andres J (2007) Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. J Phys Chem B 111:6479–6485

    Article  CAS  Google Scholar 

  34. Villamagua L, Stashans A, Lee P-M, Liu Y-S, Liu C-Y, Carini M (2015) Change in electrical conductivity of SnO2 crystal from n-type to p-type conductivity. Chem Phys 452:71–77

    Article  CAS  Google Scholar 

  35. Köse H, Karaal Ş, Aydin AO, Akbulut H (2015) Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Mater Sci Semicond Process 38:404–412

    Article  Google Scholar 

  36. Kuang X, Liu T, Wang W, Hussain S, Peng X (2015) Controlled synthesis of SnO2 hierarchical architectures made of ultrathin nanoflakes for enhanced ethanol gas sensing. Appl Surf Sci 351:1087–1093

    Article  CAS  Google Scholar 

  37. Richard R, Freddy M, Washington C, Patricio P, Arvids S (2013) SnO2 physical and chemical properties due to the impurity doping. In: Proceedings of the international multiconference of engineers and computer scientists, vol II

  38. Benouis CE, Benhaliliba M, Mouffak Z, Avila-Garcia A, Tiburcio-Silver A, Ortega Lopez M, Romano Trujillo R, Ocak YS (2014) The low resistive and transparent Al-doped SnO2 films: p-type conductivity, nanostructures and photoluminescence. J Alloy Compd 603:213–223

    Article  CAS  Google Scholar 

  39. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu Li (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455602–455603

    Article  Google Scholar 

  40. Hernandez-Ramirez F, Tarancon A, Casals O, Pellicer E, Rodriguez J, Romano-Rodriguez A, Morante JR, Barth S, Mathur S (2007) Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Phys Rev B 76:085429–085430

    Article  Google Scholar 

  41. Kisu K, Iijima M, Iwama E, Saito M, Orikasa Y, Naoi W, Naoi K (2014) The origin of anomalous large reversible capacity for SnO2 conversion reaction. J Mater Chem A 2:13058–13068

    Article  CAS  Google Scholar 

  42. Chen Y, Song B, Chen M, Xue J (2014) A study of the superior electrochemical performance of 3 nm SnO2 nanoparticles supported by graphene. J Mater Chem A 2:5688–5695

    Article  CAS  Google Scholar 

  43. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  44. Reddy MV, Andreea LYT, Ling AY, Hwee JNC, Lin CA, Admas S, Loh KP, Mathe MK, Ozoemena KI, Chowdari BVR (2013) Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2. Electrochim Acta 106:143–148

    Article  CAS  Google Scholar 

  45. Huang L, Wei H-B, Ke F-S, Cai J-S, Fan X-Y, Sun S-G (2007) Infrared irradiation-assisted one-step synthesis of nanosized tin dioxide particles and particle size effect on lithium storage performance. Colloid Surf A 308:87–92

    Article  CAS  Google Scholar 

  46. Reddy MV, Yu Tse L, Bruce WKZ, Chowdari BVR (2015) Low temperature molten salt preparation of nano-SnO2 as anode for lithium-ion batteries. Mater Lett 138:231–234

    Article  CAS  Google Scholar 

  47. Liu B, Cao M, Zhao X, Tian Y, Hu C (2013) Facile synthesis of ultrafine carbon-coated SnO2 nanoparticles for high-performance reversible lithium storage. J Power Sources 243:54–59

    Article  CAS  Google Scholar 

  48. Courtney IA, Dahn J (1997) Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass. J Electrochem Soc 144:2943–2948

    Article  CAS  Google Scholar 

  49. Shiva K, Kiran MSRN, Ramamurty U, Asokan S, Bhattacharyya AJ (2012) A broad pore size distribution mesoporous SnO2 as anode for lithium-ion batteries. J Solid State Electrochem 16:3643–3649

    Article  CAS  Google Scholar 

  50. Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17:3297–3301

    Article  CAS  Google Scholar 

  51. Yuan L, Guo ZP, Konstantinov K, Liu HK, Dou SX (2006) Nanostructured spherical porous SnO2 anodes for lithium-ion batteries. J Power Sources 159:345–348

    Article  CAS  Google Scholar 

  52. Guo ZP, Du GD, Nuli Y, Hassan MF, Liu HK (2009) Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. J Mater Chem 19:3253–3257

    Article  CAS  Google Scholar 

  53. Yin X, Chen L, Li C, Hao Q, Liu S, Li Q, Zhang E, Wang T (2011) Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties. Electrochim Acta 56:2358–2363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Russian Science Foundation (Grant No. 14-23-00078) is gratefully acknowledged. The authors are also grateful to Silvia Schorn and Elisabeth Wolff for their help during the electrochemical investigation of the anodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Codruta A. Vlaic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriganova, A.B., Vlaic, C.A., Ivanov, S. et al. Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries. J Appl Electrochem 46, 527–538 (2016). https://doi.org/10.1007/s10800-016-0936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0936-2

Keywords

Navigation