Skip to main content
Log in

A facile fabrication of nanometer tetragonal rod–like SnO2 as anode for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A facile and simple solid phase method has been proposed to prepare SnO2 with SnSe as the precursor. The as-obtained powders were characterized by XRD, indicating that this material was almost pure SnO2. SEM and TEM images reveal that the microscopic morphology of SnO2 material was affected by the heating rates during the formation process of SnSe. The electrochemical performance of SnO2 as anode material for Li-ion batteries was investigated, which demonstrate that the as-prepared SnO2 at heating rate of 10 °C min−1 and packed by copper foil exhibits as high as 899.5 mAh g–1 initial charge capacity at a current density of 0.1 A g−1. Moreover, the SnO2 material shows a good rate performance, suggesting its promising application as anode material for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sui YL, Zhou J, Wang XW, Wu L, Zhong SK, Li YG (2021) Recent advances in black– phosphorus–based materials for electrochemical energy storage. Mater Today 42:117–136

    Article  CAS  Google Scholar 

  2. Nie Y, Xiao W, Miao C, Wang JL, Tan Y, Xu MB, Wang CJ (2021) Improving the structural stability of Ni–rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceram Int 47:9717–9726

    Article  CAS  Google Scholar 

  3. Liu YJ, Guo H, Zhang BH, Wen GY, Vajtai R, Wu L, Ajayan PM, Wang L (2020) Sustainable synthesis of N–doped hollow porous carbon spheres via a spray–drying method for lithium–sulfur storage with ultralong cycle life. Batter Supercaps 3:1201–1208

    Article  CAS  Google Scholar 

  4. Qu XY, Yu ZL, Ruan DS, Dou AC, Su MR, Zhou Y, Liu YJ, Chu DW (2020) Enhanced electrochemical performance of Ni–rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng 8:5819–5830

    Article  CAS  Google Scholar 

  5. Li MQ, Su AB, Qin QW, Qin Y, Dou AC, Zhou Y, Su MR, Liu YJ (2021) High–rate capability of columbite CuNb2O6 anode materials for lithium–ion batteries. Mater Lett 284:128915

    Article  CAS  Google Scholar 

  6. Ma XH, Wei YY, Ding W, Zhou JF, Zi ZF, Dai JM (2017) Synthesis of MnO@multi–walled CNTs composite film electrodes for lithium–ion batteries by an improved electrostatic spray deposition method. J Alloys Compd 717:69–77

    Article  CAS  Google Scholar 

  7. Ma BX, Ye YY, Qiao F, Qian MF, Cao X, Wei YY, Liu J, Sha ML, Zi ZF, Daibet JM (2020) Homogeneous MnO nanoparticles fabricated by electrostatic spray precipitation and lithium–storage performances. Scr Mater 187:76–81

    Article  CAS  Google Scholar 

  8. Ma XH, Wei YY, Liang CH, Zi ZF, Zhou JH, Dai JM, Zhu XB (2017) Three–dimensional MnO/reduced graphite oxide composite films as anode materials for high performance lithium–ion batteries. Ceram Int 43:10873–10880

    Article  CAS  Google Scholar 

  9. Ma XH, Cheng L, Li LL, Cao X, Ye YY, Wei YY, Wu YD, Sha ML, Zi ZF, Dai JM (2020) Influence of cut–off voltage on the lithium storage performance of Nb12W11O63 anode. Electrochim Acta 332:135380

    Article  CAS  Google Scholar 

  10. Ma XH, Cao X, Ye YY, Qiao F, Qian MF, Wei YY, Wu YD, Zi ZF, Dai JM (2020) Study on low–temperature performances of Nb16W5O55 anode for lithium–ion batteries. Solid State Ionics 353:115376

    Article  CAS  Google Scholar 

  11. Dong WJ, Xu JJ, Wang C, Lu Y, Liu XY, Wang X, Yuan XT, Wang Z, Lin TQ, Sui ML, Chen I-W, Huang FQ (2017) A robust and conductive black tin oxide nanostructure makes efficient lithium–ion batteries possible. Adv Mater 29:1700136

    Article  Google Scholar 

  12. Xia SB, Li FS, Shen X, Li X, Cai XL, Liu JJ (2019) Heterostructural SnO/SnO2@C composite fabricated from tin–based coordination polymer as high–performance anode materials for lithium ion batteries. Matter Lett 251:94–97

    Article  CAS  Google Scholar 

  13. Tian QH, Zhang F, Zhang W, Yang L (2019) Non–smooth carbon coating porous SnO2 quasi–nanocubes towards high lithium storage. Electrochim Acta 307:393–402

    Article  CAS  Google Scholar 

  14. Jin RC, Meng YF, Li GH (2017) Multiwalled carbon nanotubes@C@SnO2 quantum dots and SnO2 quantum dots@C as high rate anode materials for lithium–ion batteries. Appl Surf Sci 423:476–483

    Article  CAS  Google Scholar 

  15. Li HJ, Su QM, Kang JW, Huang M, Feng M, Feng HG, Huang P, Du GH (2018) Porous SnO2 hollow microspheres as anodes for high–performance lithium ion battery. Matter Lett 217:276–280

    Article  CAS  Google Scholar 

  16. Saikia D, Deka JR, Chou CJ, Kao HM, Yang YC (2019) 3D interpenetrating cubic mesoporous carbon supported nanosized SnO2 as an efficient anode for high performance lithium–ion batteries. J Alloys Compd 791:892–904

    Article  CAS  Google Scholar 

  17. Wang HM, Yan Y, Chen G (2019) The effects of confinement on TiO2@SnO2@TiO2 hollow spheres for high reversible lithium storage capacity. J Alloys Compd 778:375–381

    Article  CAS  Google Scholar 

  18. Chang LM, Yi Z, Wang ZM, Wang LM, Cheng Y (2019) Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage. Appl Surf Sci 484:646–654

    Article  CAS  Google Scholar 

  19. Sun L, Si HC, Zhang YX, Shi Y, Wang K, Liu JG, Zhang YH (2019) Sn–SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J Power Sources 415:126–135

    Article  CAS  Google Scholar 

  20. Yao WQ, Wu SB, Zhan L, Wang YL (2019) Two–dimensional porous carbon–coated sandwich–like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high–rate and long cycle life lithium–ion batteries. Chem Eng J 361:329–341

    Article  CAS  Google Scholar 

  21. Hong ZM, Tian QH, Zhang W, Yang L (2019) The preparation of a new quasi–elliptic TiO2/SnO2/C composite and its lithium storage. Matter Lett 237:45–48

    Article  CAS  Google Scholar 

  22. Yang J, Chen S, Tang JJ, Tian HY, Zhou XY (2018) The effect of passivation film in preparation 3D structural carbon paper/tin oxide@carbon as freestanding anode for lithium–ion batteries. Appl Surf Sci 435:203–209

    Article  CAS  Google Scholar 

  23. Ngoc TM, Duy NV, Hung CM, Hoa ND, Nguyen H, Tonezzer M, Hieu NV (2019) Self–heated Ag–decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S–selective sensing. Anal Chim Acta 1069:108–116

    Article  CAS  Google Scholar 

  24. Wu L, Zheng J, Wang L, Xiong XH, Shao Y, Wang G, Wang JH, Zhong SK, Wu MH (2019) PPy–encapsulated SnS2 nanosheets stabilized by defects on TiO2 support as durable anode material for lithium ion battery. Angew Chem Int Ed 58:811–815

    Article  CAS  Google Scholar 

  25. Zhou XY, Huang B, Zou YL, Xie J, Yang J (2014) Cotton–templated fabrication of hierarchical SnO2 mesoporous microtubes as the anode material of lithium ion battery. Matter Lett 120:279–282

    Article  CAS  Google Scholar 

  26. Liu R, Li D, Wang C, Li N, Li Q, Lu X, Spendelow JS, Wu G (2014) Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium–ion batteries. Nano Energy 6:73–81

    Article  CAS  Google Scholar 

  27. Yu ZL, Qu XY, Dou AC, Zhou Y, Su MR, Liu YJ (2021) Carbon–coated cation–disordered rocksalt–type transition metal oxide composites for high energy Li–ion batteries. Ceram Int 47:1758–1765

    Article  CAS  Google Scholar 

  28. Wang HJ, Jiang GW, Tan XJ, Liao JK, Yang X, Yuan R, Chai YQ (2018) Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorg Chem Commun 95:67–72

    Article  CAS  Google Scholar 

  29. Wang F, Jiao HX, He EK, Yang SA, Chen YM, Zhao MS, Song XP (2016) Facile synthesis of ultrafine SnO2 nanoparticles embedded in carbon networks as a high–performance anode for lithium–ion batteries. J Power Sources 326:78–83

    Article  CAS  Google Scholar 

  30. Han F, Li WC, Li MR, Lu AH (2012) Fabrication of superior–performance SnO2@C composites for lithium–ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem 22:9645–9651

    Article  CAS  Google Scholar 

  31. Tian QH, Mao YN, Zhang XZ, Yang L (2018) Heterogeneous nanocrystals assembled TiO2/SnO2/C composite for improved lithium storage. Appl Surf Sci 447:408–415

    Article  CAS  Google Scholar 

  32. Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen–doped graphene sheets as anode materials for lithium–ion batteries. Adv Mater 25:2152–2157

    Article  CAS  Google Scholar 

  33. Yuan S, Zhu YH, Li W (2016) Surfactant–free aqueous synthesis of pure single–crystalline SnSe nanosheet clusters as anode for high energy and power density sodium ion batteries. Adv Mater 29:27874214

    Google Scholar 

  34. Wang W, Zheng H, Liu Q (2017) Ultrathin Layered SnSe Nanoplates for Low Voltage, High–Rate, and Long–Life Alkali–Ion Batteries. Small 13:1702228

    Article  Google Scholar 

  35. Chen JS, Cheah YL, Chen YT, Jayaprakash N, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high–capacity anode materials for lithium–ion batteries. J Phys Chem C 113:20504–20508

    Article  CAS  Google Scholar 

  36. Narsimulu D, Nagaraju G, Sekhar SC (2021) Three–dimensional porous SnO2/carbon cloth electrodes for high–performance lithium and sodium ion batteries. Appl Surf Sci 538:148033

    Article  CAS  Google Scholar 

  37. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium–ion batteries. Angew Chem Int Ed 46:750–753

    Article  CAS  Google Scholar 

  38. Zhou D, Song WL, Fang LZ (2015) Hollow core–shell SnO2/C fibers as highly stable anodes for lithium–ion batteries. ACS Appl Mater Interfaces 7:21472–21478

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley

  40. Chen KF, Song SY, Xue DF (2015) Faceted Cu2O structures with enhanced Li–ion battery anode performances. Cryst Eng Comm 17:2110–2117

    Article  CAS  Google Scholar 

  41. Park JC, Kim J, Kwon H, Song H (2009) Gram–scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium–ion battery anode materials. Adv Mater 21:803–807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was sponsored by the Jiangsu Postdocroral Science Foundation (2020Z090), China Postdoctoral Science Foundation (2020M671361), National Natural Science Foundation of China (51774150, 51974137 and 52004103), and the Young talents training Program of Jiangsu university (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjian Liu.

Ethics declarations

Prime Novelty Statement

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

All authors: Mingru su, Tian Gao, Shuai Liu, Ke Liu, Kai Fu, Aichun Dou, Yunjian Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Gao, T., Zhu, G. et al. A facile fabrication of nanometer tetragonal rod–like SnO2 as anode for lithium ion batteries. Ionics 27, 4731–4737 (2021). https://doi.org/10.1007/s11581-021-04045-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04045-6

Keywords

Navigation