Skip to main content
Log in

Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co(III) and Ni(II)

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen reduction electrocatalysts based on the monoethanolmine complexes {[CoEtm]2(μ-Etm)4Ni(NO3)2} and {[CoEtm]2(μ-Etm)4Ni(NO3)2} + activated carbon AG-3 have been obtained by high-temperature synthesis. The nature of active centers on the synthesized electrocatalysts was described. Using potentiostatic and cyclic potentiodynamic voltammetry, the kinetic characteristics of catalysts in the oxygen electroreduction reaction were determined. Thermal decomposition of the thermally unstable complexes was described and character of the active centers formed was discussed. The optimal synthesis temperature of electrocatalysts is 600 °C in an inert atmosphere. The calculated exchange current densities for the oxygen electroreduction reaction at the catalysts in 1 M KOH at 20 °C was j 0  = 1.01 × 10−3 A g−1–3.3 × 10−3 A g−1. The Tafel slopes of stationary polarization curves are 0.054–0.063 V for b 1 and 0.106–0.125 V for b 2 . The prepared electrocatalysts can be recommended only for electrochemical systems with alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhu JL, Shen PK (2013) Chelate resin self-assembled quaternary Co-N-P-C catalyst for oxygen reduction reaction. RSC Adv 3(34):14686–14690. doi:10.1039/c3ra41952e

    Article  CAS  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. doi:10.1021/cr020730k

    Article  CAS  Google Scholar 

  3. Winter M (2003) Brodd RJ (2005) What are batteries, fuel cells, and supercapacitors? (vol 104, pg 4245. Chem Rev 105(3):1021. doi:10.1021/cr040110e

    Article  Google Scholar 

  4. Tarasevich MR, Radyushkina KA, Zhutaeva GV (2004) Electrocatalysis of the oxygen reaction by pyropolymers of N-4 complexes. Russ J Electrochem 40(11):1174–1187. doi:10.1023/B:RUEL.0000048651.78377.5c

    Article  CAS  Google Scholar 

  5. Radyushkina KA, Tarasevich MR (1986) Electrocatalytic properties of pyrolytic polymers produced from N-4-complexes (review). Soviet Electrochemistry 22(9):1087–1100

    Google Scholar 

  6. Tarasevich MR, Radyuskina KA (1989) Pyropolymers of N-4 complexes structure and electrocatalytic properties. Mater Chem Phys 22(3–4):477–502. doi:10.1016/0254-0584(89)90011-4

    Article  CAS  Google Scholar 

  7. Grinberg VA, Kulova TL, Maiorova NA, Dobrokhotova ZV, Pasynskii AA, Skundin AM, Khazova OA (2007) Nanostructured catalysts for cathodes of oxygen-hydrogen fuel cells. Russ J Electrochem 43(1):75–84. doi:10.1134/s1023193507010119

    Article  CAS  Google Scholar 

  8. Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48. doi:10.1016/j.jpowsour.2008.10.106

    Article  CAS  Google Scholar 

  9. Cheng FY, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192. doi:10.1039/c1cs15228a

    Article  CAS  Google Scholar 

  10. Jorissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155(1):23–32. doi:10.1016/j.jpowsour.2005.07.038

    Article  Google Scholar 

  11. Neburchilov V, Wang HJ, Martin JJ, Qu W (2010) A review on air cathodes for zinc-air fuel cells. J Power Sources 195(5):1271–1291. doi:10.1016/j.jpowsour.2009.08.100

    Article  CAS  Google Scholar 

  12. Yeager E (1984) Electrocatalysts for O-2 reduction. Electrochim Acta 29(11):1527–1537. doi:10.1016/0013-4686(84)85006-9

    Article  CAS  Google Scholar 

  13. Bagotskii VS, Bogdanovskaya VA, Vasil´ev YB (1980) Problems of electrocatalysis (Problemy elektrokataliza). Nauka, Moscow

    Google Scholar 

  14. Makhankova VG, Vassilyeva OY, Kokozay VN, Reedijk J, van Albada GA, Jezierska J, Skelton BW (2002) Formation, structures, and magnetic and EPR spectroscopic properties of dicobalt(III)-dicopper(II) complexes featuring heterotetranuclear cations of a puckered cyclic structure with diethanolamine and diethanolamine(2-) as bridging Ligands. Eur J Inorg Chem 8:2163–2169

    Article  Google Scholar 

  15. Makhankova VG, Vassilyeva OY, Kokozay VN, Skelton BW, Sorace L, Gatteschi D (2002) Novel polynuclear Cu-II/Co-II complexes constructed from one and two Cu2Co triangles with antiferromagnetic exchange coupling. J Chem Soc-Dalton Trans 22:4253–4259. doi:10.1039/b205389f

    Article  Google Scholar 

  16. Stepanenko ON, Reiter LG (1992) Synthesis, structure and acid-base properties of cobalt(III) complexes with aminoalcohols. Ukr Khim Zh 58(12):1047–1054

    CAS  Google Scholar 

  17. Potaskalov VA, Reiter LG, Potaskalova NI, Podberuskaya NV, Pervukhina NV, Virovets AV (2005) Crystal structure and properties of meridional cobalt(III) tris(aminoethoxide). Russ J Inorg Chem 50(3):378–381

    Google Scholar 

  18. Tarasevich MR, Radyushkina KA (1982) Catalysis and electrocatalysis by metalloporphyrines (Kataliz i elektrokataliz metaloporfirinami). Nauka, Moscow

    Google Scholar 

  19. Udovenko VV, Stepanenko ON (1969) Geometrical isomers of cobalt(III) tris(β-aminoethylate). Zh Neorg Khim 14 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.):1581-1585

  20. Beynon JH (1960) Mass spectrometry and its applications to organic chemistry. Elsevier Pub. Co., London

    Google Scholar 

  21. Shteinberg GV, Kukushkina IA, Bagotskii VS, Tarasevich MR (1979) Kinetics of oxygen reduction at disperse carbon materials. Soviet Electrochem 15(4):443–448

    Google Scholar 

  22. Tarasevich MR (1984) Elektrokhimia uglerodnych materialov (Electrochemistry of carbon based materials). Nauka, Moscow

    Google Scholar 

Download references

Acknowledgments

Financial support of the National Academy of Sciences of Ukraine and Academy of Sciences of the Czech Republic for exchange of scientists is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šubrt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirskyy, Y., Murafa, N., Korduban, O.M. et al. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co(III) and Ni(II). J Appl Electrochem 44, 1193–1203 (2014). https://doi.org/10.1007/s10800-014-0732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0732-9

Keywords

Navigation