Skip to main content
Log in

Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Recent studies have shown that electrolysis can be an efficient process for nitrogen removal from urine. These studies have been conducted with urea solutions or fresh urine, but urine collected in NoMix toilets and urinals has a substantially different composition, because bacteria hydrolyse urea quickly to ammonia and carbonate. In this study, we compared electrochemical removal of nitrogen from synthetic solutions of fresh and stored urine using IrO2 anodes. We could show that in fresh urine both ammonia and urea are efficiently eliminated, mainly through chlorine-mediated oxidation. However, in stored urine the presence of carbonate, arising from urea hydrolysis, leads to an inhibition of ammonia oxidation. We suggest two parallel mechanisms to explain this effect: the competition between chloride and carbonate oxidation at the anode and the competition between chlorate formation, enhanced by the buffering effect of carbonate, and ammonia oxidation for the consumption of active chlorine in the bulk. However, further experiments are needed to support the latter mechanism. In conclusion, this study highlights the negative consequences of the presence of carbonate in urine solutions, but also in other wastewaters, when subjected to an electrolytic treatment on IrO2 in alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larsen TA, Maurer M, Udert KM, Lienert J (2007) Water Sci Technol 56:229

    Article  CAS  Google Scholar 

  2. Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J (2009) Environ Sci Technol 16:6121

    Article  Google Scholar 

  3. Maurer M, Pronk W, Larsen TA (2006) Water Res 40:3151

    Article  CAS  Google Scholar 

  4. Udert KM, Wächter M (2012) Water Res 46:453

    Article  CAS  Google Scholar 

  5. Bürgmann H, Jenni S, Vazquez F, Udert KM (2011) Appl Environ Microbiol 77:5897

    Article  Google Scholar 

  6. Başakçılardan-Kabakcı S, İpekoğlu AN, Talınlı İ (2007) Environ Eng Sci 24:615

    Article  Google Scholar 

  7. Anglada A, Urtiaga A, Ortiz I (2009) J Chem Technol Biotechnol 84:1747

    Article  CAS  Google Scholar 

  8. Panizza M (2010) In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer, New York, p 35

  9. Rosca V, Duca M, DeGroot MT, Koper MTM (2009) Chem Rev 109:2209

    Article  CAS  Google Scholar 

  10. Muthuvel M, Botte GG (2009) In: White RE (ed) Modern aspects of electrochemistry. Springer Science and Business Media, New York, pp 207–245

    Google Scholar 

  11. Boggs BK, King RL, Botte GG (2009) Chem Commun 32:4859

    Article  Google Scholar 

  12. Diaz V, Ibanez R, Gomez P, Urtiaga AM, Ortiz I (2011) Water Res 45:125

    Article  CAS  Google Scholar 

  13. Kapalka A, Katsaounis A, Michels NL, Leonidova A, Souentie S, Comninellis C, Udert KM (2010) Electrochem Commun 12:1203

    Article  CAS  Google Scholar 

  14. Bunce NJ, Bejan D (2011) Electrochim Acta 56:8085

    Article  CAS  Google Scholar 

  15. Gerischer H, Mauerer A (1970) J Electroanal Chem 25:421

    Article  CAS  Google Scholar 

  16. Kapalka A, Joss L, Anglada A, Comninellis C, Udert KM (2010) Electrochem Commun 12:1714

    Article  CAS  Google Scholar 

  17. Kapalka A, Cally A, Neodo S, Comninellis C, Wächter M, Udert KM (2010) Electrochem Commun 12:18

    Article  CAS  Google Scholar 

  18. Kim KW, Kim YJ, Kim IT, Park GI, Lee EH (2005) Electrochim Acta 50:4356

    Article  CAS  Google Scholar 

  19. Kapalka A, Fierro S, Frontistis Z, Katsaounis A, Frey O, Koudelka M, Comninellis C, Udert KM (2009) Electrochem Commun 11:1590

    Article  CAS  Google Scholar 

  20. Michels NL, Kapalka A, Abd-El-Latif AA, Baltruschat H, Comninellis C (2010) Electrochem Commun 12:1199

    Article  CAS  Google Scholar 

  21. Kapalka A, Fierro S, Frontistis Z, Katsaounis A, Neodo S, Frey O, de Rooij N, Udert KM, Comninellis C (2011) Electrochim Acta 56:1361

    Article  CAS  Google Scholar 

  22. Simka W, Piotrowski J (2007) Przem Chem 86:841

    CAS  Google Scholar 

  23. King RL, Botte GG (2011) J Power Sources 196:9579

    Article  CAS  Google Scholar 

  24. Ikematso M, Kaneda K, Iseki M, Matsuura H, Yasuda M (2006) Chem Lett 35:576

    Article  Google Scholar 

  25. Udert KM, Larsen TA, Biebow M, Gujer W (2003) Water Res 37:2571

    Article  CAS  Google Scholar 

  26. Udert KM, Larsen TA, Gujer W (2006) Water Sci Technol 54:413

    CAS  Google Scholar 

  27. Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) J Appl Electrochem 39:1361

    Article  CAS  Google Scholar 

  28. Randtke SJ (2010) In: Black & Veatch Corporation (ed) White’s handbook of chlorination and alternative disinfectants. John Wiley and Sons, New Jersey, p 183

    Google Scholar 

  29. Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schroder F, Rennau J (1999) J Appl Electrochem 29:861

    CAS  Google Scholar 

  30. Devkota LM, Williams DS, Matta JH, Albertson OE, Grasso D, Fox P (2000) Water Environ Res 72:610

    Article  CAS  Google Scholar 

  31. Hernlem BJ (2005) Water Res 39:2245

    Article  CAS  Google Scholar 

  32. Simka W, Piotrowski J, Robak A, Nawrat G (2009) J Appl Electrochem 39:1137

    Article  CAS  Google Scholar 

  33. Wright JC, Michaels AS, Appleby AJ (1986) AIChE J 32:1450

    Article  CAS  Google Scholar 

  34. Bezerra ACS, de Sá EL, Nart FC (1997) J Phys Chem B 101:6443

    Article  CAS  Google Scholar 

  35. Di Giulio S, Jara CC, Fino D, Saracco G, Specchia V, Spinelli P (2007) Ind Eng Chem Res 46:6783

    Article  Google Scholar 

  36. Trasatti S (1984) Electrochim Acta 29:1503

    Article  CAS  Google Scholar 

  37. Vanlangendonck Y, Corbisier D, Van Lierde A (2005) Water Res 39:3028

    Article  CAS  Google Scholar 

  38. Landolt D, Ibl N (1970) Electrochim Acta 15:1165

    Article  CAS  Google Scholar 

  39. Van der Wiel PM, Janssen LJJ, Hoogland JG (1971) Electrochim Acta 16:1217

    Article  Google Scholar 

  40. Zhang JJ, Oloman CW (2005) J Appl Electrochem 35:945

    Article  CAS  Google Scholar 

  41. Ruiz EJ, Ortega-Borges R, Jurado JL, Chapman TW, Meas Y (2009) Electrochem Solid-State Lett 12:E1

    Article  CAS  Google Scholar 

  42. Kim K-W, Kim Y-J, Kim I-T, Park G-II, Lee E-H (2006) Water Res 40:1431

    Article  CAS  Google Scholar 

  43. Jung YJ, Baek KW, Oh BS, Kang JW (2010) Water Res 44:5345

    Article  CAS  Google Scholar 

  44. Czarnetzki LR, Janssen LJJ (1992) J Appl Electrochem 22:315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Amstutz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amstutz, V., Katsaounis, A., Kapalka, A. et al. Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes. J Appl Electrochem 42, 787–795 (2012). https://doi.org/10.1007/s10800-012-0444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0444-y

Keywords

Navigation