Journal of Applied Electrochemistry

, Volume 42, Issue 9, pp 787–795 | Cite as

Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes

  • Véronique Amstutz
  • Alexandros Katsaounis
  • Agnieszka Kapalka
  • Christos Comninellis
  • Kai M. Udert
Original Paper


Recent studies have shown that electrolysis can be an efficient process for nitrogen removal from urine. These studies have been conducted with urea solutions or fresh urine, but urine collected in NoMix toilets and urinals has a substantially different composition, because bacteria hydrolyse urea quickly to ammonia and carbonate. In this study, we compared electrochemical removal of nitrogen from synthetic solutions of fresh and stored urine using IrO2 anodes. We could show that in fresh urine both ammonia and urea are efficiently eliminated, mainly through chlorine-mediated oxidation. However, in stored urine the presence of carbonate, arising from urea hydrolysis, leads to an inhibition of ammonia oxidation. We suggest two parallel mechanisms to explain this effect: the competition between chloride and carbonate oxidation at the anode and the competition between chlorate formation, enhanced by the buffering effect of carbonate, and ammonia oxidation for the consumption of active chlorine in the bulk. However, further experiments are needed to support the latter mechanism. In conclusion, this study highlights the negative consequences of the presence of carbonate in urine solutions, but also in other wastewaters, when subjected to an electrolytic treatment on IrO2 in alkaline media.


Ammonia electrooxidation Urea electrooxidation Inhibition by carbonate Carbonate electrooxidation Urine treatment 



Funding for this project was provided by the Bill and Melinda Gates Foundation.

Supplementary material

10800_2012_444_MOESM1_ESM.docx (215 kb)
Supplementary material 1 (DOCX 216 kb)


  1. 1.
    Larsen TA, Maurer M, Udert KM, Lienert J (2007) Water Sci Technol 56:229CrossRefGoogle Scholar
  2. 2.
    Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J (2009) Environ Sci Technol 16:6121CrossRefGoogle Scholar
  3. 3.
    Maurer M, Pronk W, Larsen TA (2006) Water Res 40:3151CrossRefGoogle Scholar
  4. 4.
    Udert KM, Wächter M (2012) Water Res 46:453CrossRefGoogle Scholar
  5. 5.
    Bürgmann H, Jenni S, Vazquez F, Udert KM (2011) Appl Environ Microbiol 77:5897CrossRefGoogle Scholar
  6. 6.
    Başakçılardan-Kabakcı S, İpekoğlu AN, Talınlı İ (2007) Environ Eng Sci 24:615CrossRefGoogle Scholar
  7. 7.
    Anglada A, Urtiaga A, Ortiz I (2009) J Chem Technol Biotechnol 84:1747CrossRefGoogle Scholar
  8. 8.
    Panizza M (2010) In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer, New York, p 35Google Scholar
  9. 9.
    Rosca V, Duca M, DeGroot MT, Koper MTM (2009) Chem Rev 109:2209CrossRefGoogle Scholar
  10. 10.
    Muthuvel M, Botte GG (2009) In: White RE (ed) Modern aspects of electrochemistry. Springer Science and Business Media, New York, pp 207–245Google Scholar
  11. 11.
    Boggs BK, King RL, Botte GG (2009) Chem Commun 32:4859CrossRefGoogle Scholar
  12. 12.
    Diaz V, Ibanez R, Gomez P, Urtiaga AM, Ortiz I (2011) Water Res 45:125CrossRefGoogle Scholar
  13. 13.
    Kapalka A, Katsaounis A, Michels NL, Leonidova A, Souentie S, Comninellis C, Udert KM (2010) Electrochem Commun 12:1203CrossRefGoogle Scholar
  14. 14.
    Bunce NJ, Bejan D (2011) Electrochim Acta 56:8085CrossRefGoogle Scholar
  15. 15.
    Gerischer H, Mauerer A (1970) J Electroanal Chem 25:421CrossRefGoogle Scholar
  16. 16.
    Kapalka A, Joss L, Anglada A, Comninellis C, Udert KM (2010) Electrochem Commun 12:1714CrossRefGoogle Scholar
  17. 17.
    Kapalka A, Cally A, Neodo S, Comninellis C, Wächter M, Udert KM (2010) Electrochem Commun 12:18CrossRefGoogle Scholar
  18. 18.
    Kim KW, Kim YJ, Kim IT, Park GI, Lee EH (2005) Electrochim Acta 50:4356CrossRefGoogle Scholar
  19. 19.
    Kapalka A, Fierro S, Frontistis Z, Katsaounis A, Frey O, Koudelka M, Comninellis C, Udert KM (2009) Electrochem Commun 11:1590CrossRefGoogle Scholar
  20. 20.
    Michels NL, Kapalka A, Abd-El-Latif AA, Baltruschat H, Comninellis C (2010) Electrochem Commun 12:1199CrossRefGoogle Scholar
  21. 21.
    Kapalka A, Fierro S, Frontistis Z, Katsaounis A, Neodo S, Frey O, de Rooij N, Udert KM, Comninellis C (2011) Electrochim Acta 56:1361CrossRefGoogle Scholar
  22. 22.
    Simka W, Piotrowski J (2007) Przem Chem 86:841Google Scholar
  23. 23.
    King RL, Botte GG (2011) J Power Sources 196:9579CrossRefGoogle Scholar
  24. 24.
    Ikematso M, Kaneda K, Iseki M, Matsuura H, Yasuda M (2006) Chem Lett 35:576CrossRefGoogle Scholar
  25. 25.
    Udert KM, Larsen TA, Biebow M, Gujer W (2003) Water Res 37:2571CrossRefGoogle Scholar
  26. 26.
    Udert KM, Larsen TA, Gujer W (2006) Water Sci Technol 54:413Google Scholar
  27. 27.
    Ouattara L, Fierro S, Frey O, Koudelka M, Comninellis C (2009) J Appl Electrochem 39:1361CrossRefGoogle Scholar
  28. 28.
    Randtke SJ (2010) In: Black & Veatch Corporation (ed) White’s handbook of chlorination and alternative disinfectants. John Wiley and Sons, New Jersey, p 183Google Scholar
  29. 29.
    Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schroder F, Rennau J (1999) J Appl Electrochem 29:861Google Scholar
  30. 30.
    Devkota LM, Williams DS, Matta JH, Albertson OE, Grasso D, Fox P (2000) Water Environ Res 72:610CrossRefGoogle Scholar
  31. 31.
    Hernlem BJ (2005) Water Res 39:2245CrossRefGoogle Scholar
  32. 32.
    Simka W, Piotrowski J, Robak A, Nawrat G (2009) J Appl Electrochem 39:1137CrossRefGoogle Scholar
  33. 33.
    Wright JC, Michaels AS, Appleby AJ (1986) AIChE J 32:1450CrossRefGoogle Scholar
  34. 34.
    Bezerra ACS, de Sá EL, Nart FC (1997) J Phys Chem B 101:6443CrossRefGoogle Scholar
  35. 35.
    Di Giulio S, Jara CC, Fino D, Saracco G, Specchia V, Spinelli P (2007) Ind Eng Chem Res 46:6783CrossRefGoogle Scholar
  36. 36.
    Trasatti S (1984) Electrochim Acta 29:1503CrossRefGoogle Scholar
  37. 37.
    Vanlangendonck Y, Corbisier D, Van Lierde A (2005) Water Res 39:3028CrossRefGoogle Scholar
  38. 38.
    Landolt D, Ibl N (1970) Electrochim Acta 15:1165CrossRefGoogle Scholar
  39. 39.
    Van der Wiel PM, Janssen LJJ, Hoogland JG (1971) Electrochim Acta 16:1217CrossRefGoogle Scholar
  40. 40.
    Zhang JJ, Oloman CW (2005) J Appl Electrochem 35:945CrossRefGoogle Scholar
  41. 41.
    Ruiz EJ, Ortega-Borges R, Jurado JL, Chapman TW, Meas Y (2009) Electrochem Solid-State Lett 12:E1CrossRefGoogle Scholar
  42. 42.
    Kim K-W, Kim Y-J, Kim I-T, Park G-II, Lee E-H (2006) Water Res 40:1431CrossRefGoogle Scholar
  43. 43.
    Jung YJ, Baek KW, Oh BS, Kang JW (2010) Water Res 44:5345CrossRefGoogle Scholar
  44. 44.
    Czarnetzki LR, Janssen LJJ (1992) J Appl Electrochem 22:315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Véronique Amstutz
    • 1
  • Alexandros Katsaounis
    • 2
  • Agnieszka Kapalka
    • 1
  • Christos Comninellis
    • 1
  • Kai M. Udert
    • 3
  1. 1.Institute of Chemical Sciences and Chemical EngineeringEPFL/SB/ISICLausanneSwitzerland
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  3. 3.Process EngineeringEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations