Skip to main content
Log in

Synthesis of LSM–YSZ–GDC dual composite SOFC cathodes for high-performance power-generation systems

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This article investigates a method in further improvement of a (La0.8,Sr0.2)MnO3 (LSM)-Yttria-stabilized zirconia (YSZ) dual composite cathode by adding material with high ionic conductivity such as gadolinia-doped ceria (GDC). A nano-porous composite cathode containing LSM, YSZ, and GDC was prepared by a two-step polymerizable complex (PC) method which minimizes the formation of YSZ–GDC solid solution. The structure of the resulting LSM/GDC–YSZ dual composite cathode was such that the LSM and GDC phases were present on the YSZ core particles without formation of the La2Zr2O7, SrZrO3, and GDC–YSZ solid solution. At 800 °C, the electrode polarization resistance of the LSM/GDC–YSZ dual composite cathode decreased to 0.266 Ω cm2, compared with 0.385 Ω cm2 for the LSM/YSZ–YSZ dual composite cathode. In addition, the Ni–YSZ anode-supported single cell using a LSM/GDC–YSZ dual composite cathode with H2 as the fuel achieved a maximum power density of 0.65 W cm−2 at 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. lvers-Tiffee E, Weber A, Herbstritt D (2001) Eur Ceram Soc 21:1805

    Article  Google Scholar 

  2. Mogensen M, Skaarup S (1996) Solid State Ion 86/88:1151

    Article  Google Scholar 

  3. lvers-Tiffee E, Weber A, Schmid K, Kerbs V (2004) Solid State Ion 174:223

    Article  Google Scholar 

  4. Kuznecov M, Otschick P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ion 157:371

    Article  CAS  Google Scholar 

  5. Song HS, Lee S, Lee D, Kim H (2010) J Power Sources 195:2628

    Article  CAS  Google Scholar 

  6. Song HS, Hyun SH, Kim J, Lee H-W, Moon J (2008) J Mater Chem 18:1087

    Article  CAS  Google Scholar 

  7. Song HS, Lee S, Hyun SH, Kim J, Moon J (2009) J Power Sources 187:25–31

    Article  CAS  Google Scholar 

  8. Jiang SP, Leng YJ, Chan SH, Khor KA (2003) Electrochem Solid-State Lett 6(4):A67

    Article  CAS  Google Scholar 

  9. Nitadori T, lchiki T, Misono M (1988) Bull Chem Soc Jpn 61:621

    Article  CAS  Google Scholar 

  10. Kremenic G, Nieto JML, Tascon JMD, Tejuca LG (1985) J Chem Soc Faraday Trans 81:939

    Article  CAS  Google Scholar 

  11. Taguchi H, Matsuda D, Nagano M (1993) J Mater Sci Lett 12:891

    Article  CAS  Google Scholar 

  12. Kakihana M, Arima M, Yoshimura M, Ikeda N, Sugitani Y (1999) J Alloy Compd 283:102

    Article  CAS  Google Scholar 

  13. He H, Huang Y, Reagl J, Boaro M, Vohs JM, Gorte RJ (2003) J Am Ceram Soc 87(3):331

    Article  Google Scholar 

  14. Takeda Y, Sakaki Y, Tu HY, Phillipps MB, Imanishi N, Yamamoto O (2000) Electrochemistry 68(10):764

    CAS  Google Scholar 

  15. Mitterdorfer A, Gauckler LJ (1998) Solid State Ion 111(3–4):185

    Article  CAS  Google Scholar 

  16. Murata K, Shimotsu M (2002) J Ceram Soc Jpn 110(7):618

    Article  CAS  Google Scholar 

  17. Cao H, Deng Z, Li X, Yang J, Qin Y (2010) Int J Hydrog Energy 35:1749

    Article  CAS  Google Scholar 

  18. Kim YM, Kim-Lohsoontorn P, Baek SW, Bae J (2011) Int J Hydrog Energy 36:3138

    Article  CAS  Google Scholar 

  19. Leng Y, Chan SH, Liu Q (2008) Int J Hydrog Energy 33:3808

    Article  CAS  Google Scholar 

  20. Yang J, Muroyama H, Matsui T, Eguchi K (2010) Int J Hydrog Energy 35:10505

    Article  CAS  Google Scholar 

  21. Yen-Pei F (2010) Int J Hydrog Energy 35:8663

    Article  Google Scholar 

  22. Barbucci A, Paola Carpanese M, Viviani M, Vatistas N, Nicolella C (2009) J Appl Electrochem 39:513

    Article  CAS  Google Scholar 

  23. Hjelm J, Sogaard M, Wandel M, Mogensen MB, Menon M, Hagen A (2007) ECS Trans 7(1):1261

    Article  Google Scholar 

  24. Tanner CW, Fung K-Z, Virkar AV (1997) J Electrochem Soc 144(1):21

    Article  CAS  Google Scholar 

  25. Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143(11):3554

    Article  CAS  Google Scholar 

  26. Kim SD, Moon H, Hyun SH, Moon J, Kim J, Kim HW (2006) J Power Sources 163:392

    Article  CAS  Google Scholar 

  27. Lee D, Jung I, Lee SO, Hyun SH, Jang JH, Moon J (2011) Int J Hydrog Energy 36:6875

    Article  CAS  Google Scholar 

  28. Kim JA, Lee HJ, Kang H, Park TH (2009) Biomed Microdevices 11:287

    Article  Google Scholar 

  29. Myung J, Ko HJ, Park H, Hyun MHSH (2012) Int J Hydrog Energy 36:498

    Article  Google Scholar 

  30. Meng G, Song H, Xia C, Liu X, Peng D (2004) Fuel Cells 1–2:48

    Article  Google Scholar 

  31. Ngyuen Q, Minh (1993) J Am Ceram Soc 76(3):563

    Article  Google Scholar 

  32. Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2008) Acta Mater 48:4709

    Article  Google Scholar 

  33. Tsoga A, Naoumidis A, Stover D (2000) Solid State Ion 135:403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a New & Renewable Energy grant of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Knowledge Economy (2009T100100344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hoon Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, H.J., Myung, Jh., Hyun, SH. et al. Synthesis of LSM–YSZ–GDC dual composite SOFC cathodes for high-performance power-generation systems. J Appl Electrochem 42, 209–215 (2012). https://doi.org/10.1007/s10800-012-0390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0390-8

Keywords

Navigation