Skip to main content
Log in

Morphology and electrochemical activity of SOFC composite cathodes: I. experimental analysis

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the first part of an experimental and theoretical study performed on composite Lanthanum Strontium Manganite (LSM) and Yttria-stabilized Zirconia (YSZ) electrodes. Cathode electrocatalytic activity was investigated using different cell configurations and carrying out potentiodynamic polarisation and electrochemical impedance spectroscopy measurements (EIS). Measurements were carried out at different oxygen partial pressures, overpotentials, temperatures and electrode geometries. In order to identify the main steps involved in cathodic oxygen reduction, the NLLS-Fit procedure was used. The results for different cell geometries agree with each other, suggesting a transition in the overall reaction mechanism, from charge transfer to mass transfer control, at a critical temperature of about 750 °C. The experimental results also show a remarkable effect of electrode thickness on the overall reaction rate, throughout the temperature range tested. A grey level gradient along the thickness of the thicker electrodes were detected by analyzing microscopic images of the cells. These results, together with electrochemical measurements on cathodes with different thickness, confirm that morphology plays a key role in determining the performance of Solid Oxide Fuel Cells (SOFC) composite cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tao S, Irvine JTS, Kilner JA (2005) Adv Mater 17:1734–1737

    Article  CAS  Google Scholar 

  2. Peña-Martínez J, Marrero-López D, Pérez-Coll D, Ruiz-Morales JC, Núñez P (2007) Electrochim Acta 52:2950–2958

    Article  Google Scholar 

  3. Shao Z, Haile SM (2004) Nature 431:170–173

    Article  CAS  Google Scholar 

  4. Lv H, Tu H-y, Zhao B-y, Wu Y-j, Hu K-a (2007) Solid State Ionics 177:3467–3472

    Article  CAS  Google Scholar 

  5. Tao S, Irvine JTS (2003) Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  6. Goodenough JB, Huang Y-H (2007) J Power Sources 173:1–10

    Article  CAS  Google Scholar 

  7. Jung HY, Kim W-S, Choi S-H, Kim H-C, Kim J, Lee H-W, Lee J-H (2006) J Power Sources 155:145–151

    CAS  Google Scholar 

  8. Piccardo P, Chevalier S, Molins R, Viviani M, Caboche G, Barbucci A, Sennour M, Amendola R (2006) Surf Coat Technol 201(7):4471–4475

    Article  CAS  Google Scholar 

  9. Ucida H, Arisaka S, Watanabe M (2000) Solid State Ionics 135:347–351

    Article  Google Scholar 

  10. Liu M, Dong D, Peng R, Gao J, Diwu J, Liu X, Meng G (2008) J Power Sources 180:215–220

    Article  CAS  Google Scholar 

  11. Schneider LCR, Martin CL, Bultel Y, Dessemond L, Bouvard D (2007) Electrochim Acta 52:3190–3198

    Article  CAS  Google Scholar 

  12. Kim J-S, Pyun S-I, Shin H-C, Kang S-JL (2008) J Electrochem Soc 155(7):B762–B769

    Article  CAS  Google Scholar 

  13. Hammouche A, Schouler EJL, Henault M (1988) Solid State Ionics 28–30:1205–1207

    Article  Google Scholar 

  14. Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ionics 49:111–118

    Article  CAS  Google Scholar 

  15. Takeda Y, Sakaki Y, Ichikawa T, Imanishi N, Yamamoto O, Mori M, Mori N, Abe T (1994) Solid State Ionics 72(2):257–264

    Article  CAS  Google Scholar 

  16. Barbucci A, Carpanese MP, Reverberi AP, Cerisola G, Blanes M, Cabot PL, Viviani M, Bertei A, Nicolella C (2008) J Appl Electrochem 38:939–945

    Article  CAS  Google Scholar 

  17. Nicolella C, Bertei A, Barbucci A, Vatistas N (2008) J Appl Electrochem. doi:10.1007/s10800-008-9691-3

  18. Winkler J, Hendriksen PV, Bonanos N, Mogensen M (1998) J Electrochem Soc 145(4):1184–1192

    Article  CAS  Google Scholar 

  19. Adler SB (2002) J Electrochem Soc 149(5):E166–E172

    Article  CAS  Google Scholar 

  20. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  21. Hsieh G, Mason TO, Garboczi EJ, Pederson LR (1997) Solid State Ionics 96:153–172

    Article  CAS  Google Scholar 

  22. Rutman J, Riess I (2008) Placement of reference electrode in solid state electrolyte cells. Solid State Ionics. doi:10.1016/j.ssi.2008.01.071(in press)

  23. Boukamp BA (1986) Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  24. Fleig J (2002) Solid State Ionics 150:181–193

    Article  CAS  Google Scholar 

  25. Stoynov Z, Vladikova D (2005) Differential impedance analysis. Marin Drinov Academic Publishing House, Sofia

    Google Scholar 

  26. Virkar AV, Chen J, Tanner CW, Kim J-W (2000) Solid State Ionics 131:189–198

    Article  CAS  Google Scholar 

  27. Kenjo T, Nishiya M (1992) Solid State Ionics 57:295–302

    Article  CAS  Google Scholar 

  28. Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Italian project “FISR: Nanosistemi Inorganici ed Ibridi per lo Sviluppo e l’Innovazione di Celle a Combustibile”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Barbucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbucci, A., Paola Carpanese, M., Viviani, M. et al. Morphology and electrochemical activity of SOFC composite cathodes: I. experimental analysis. J Appl Electrochem 39, 513–521 (2009). https://doi.org/10.1007/s10800-008-9708-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9708-y

Keywords

Navigation