Skip to main content
Log in

Reducing the energy cost of protective anodizing

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Minimizing the carbon footprint of electrochemical processes is an emerging challenge for electrochemists and engineers. Here, a knowledge-based methodology for development of protective anodizing cycles for aluminium alloys, enabling simultaneous tuning of electrolyte concentration, composition, temperature and process time for reduced energy consumption is presented. In order to achieve the anticorrosion properties, the morphology of the porous anodic oxides is optimized by applying advanced potential-time regimes and additions of environmentally, friendly corrosion inhibitors to the anodizing electrolyte to provide additional active protection. The anticorrosion performance of the porous anodic oxides is assessed rapidly by electrochemical noise analysis, with the electrochemical data validated by optical and electron-optical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Paez MA, Zagal JH, Bustos O et al (1997) Electrochim Acta 42:3453

    Article  CAS  Google Scholar 

  2. Morlidge JR, Skeldon P, Thompson GE et al (1999) Electrochim Acta 44:2423

    Article  CAS  Google Scholar 

  3. Garcia-Vergara SJ, Habazaki H, Skeldon P et al. (2007) Nanotechnology 18:415605

    Google Scholar 

  4. Dattilo A, Tamiro S, Romano C (2002) EU Patent EU1233084

  5. Iglesias-Rubianes L, Garcia-Vergara SJ, Skeldon P et al (2007) Electrochim Acta 52:7148

    Article  CAS  Google Scholar 

  6. García-Rubio M, Ocón P, Climent-Font A et al (2009) Corros Sci 51:2034

    Article  Google Scholar 

  7. García-Rubio M, Ocón P, Curioni M et al (2010) Corros Sci 52:2219

    Article  Google Scholar 

  8. Curioni M, Skeldon P, Koroleva E et al (2009) J Electrochem Soc 156:C147

    Article  CAS  Google Scholar 

  9. Boisier G, Pebere N, Druez C et al (2008) J Electrochem Soc 155:C521

    Article  CAS  Google Scholar 

  10. Curioni M, Saenz De Miera M, Skeldon P et al (2008) J Electrochem Soc 155:C387

    Article  CAS  Google Scholar 

  11. Curioni M, Skeldon P, Thompson GE et al (2008) ECS Trans 13:41

    Article  CAS  Google Scholar 

  12. Saenz De Miera M, Curioni M, Skeldon P et al (2010) Surf Interface Anal 42:241

    Article  CAS  Google Scholar 

  13. Saenz de Miera M, Curioni M, Skeldon P et al (2010) Corros Sci 52:2489

    Article  CAS  Google Scholar 

  14. Saenz de Miera M, Curioni M, Skeldon P et al (2008) Corros Sci 50:3410

    Article  CAS  Google Scholar 

  15. Curioni M, Skeldon P, Thompson GE et al (2008) Adv Mat Res 38:48

    Article  CAS  Google Scholar 

  16. Wood GC, O’Sullivan JP (1970) Electrochim Acta 15:1865

    Article  CAS  Google Scholar 

  17. O’Sullivan JP, Wood GC (1970) Proc R Soc Lond Ser A 317:511

    Article  Google Scholar 

  18. Moutarlier V, Gigandet MP, Ricq L et al (2001) Appl Surf Sci 183:1

    CAS  Google Scholar 

  19. Moutarlier V, Gigandet MP, Normand B et al (2005) Corros Sci 47:937

    Article  CAS  Google Scholar 

  20. Rosero-Navarro NC, Curioni M, Bingham R et al (2010) Corros Sci 52:3356

    Article  CAS  Google Scholar 

  21. Hinton BRW, Arnott DR, Ryan NE (1986) Mater Forum 9:162

    CAS  Google Scholar 

  22. Gorman JD, Johnson ST, Johnston PN et al (1996) Corros Sci 38:1977

    Article  CAS  Google Scholar 

  23. Hughes AE, Gorman JD, Paterson PJK (1996) Corros Sci 38:1957

    Article  CAS  Google Scholar 

  24. Wan J, Thompson GE, Lu KQ et al. (1997) Journal De Physique IV: JP 7

  25. Welch PD (1967) IEEE Trans Audio Electroac AU-15:70

    Article  Google Scholar 

  26. Sanchez-Amaya JM, Cottis RA, Botana FJ (2005) Corros Sci 47:3280

    Article  CAS  Google Scholar 

  27. Cottis RA (2006) Russ J Electrochem 42:497

    Article  CAS  Google Scholar 

  28. Kuznetsov AM (2008) Russ J Electrochem 44:1327

    Article  CAS  Google Scholar 

  29. Curioni M, Roeth F, Garcia-Vergara SJ et al (2010) Surf Interface Anal 42:234

    Article  CAS  Google Scholar 

  30. Thompson GE, Furneaux RC, Goode JS et al (1978) Trans Inst Met Fin 56:159

    CAS  Google Scholar 

  31. Curioni M, Koroleva EV, Skeldon P et al. (2010) Electrochim Acta 55:7044

  32. Curioni M, Skeldon P, Thompson GE (2009) J Electrochem Soc 156:C407

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Engineering and Physical Sciences Research Council Programme Grant, LATEST2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Curioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curioni, M., Skeldon, P., Ferguson, J. et al. Reducing the energy cost of protective anodizing. J Appl Electrochem 41, 773–785 (2011). https://doi.org/10.1007/s10800-011-0295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0295-y

Keywords

Navigation