Skip to main content
Log in

Electrochemistry and voltammetric determination of furazolidone with a multi-walled nanotube composite film-glassy carbon electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study describes the electrochemical properties of furazolidone (Fu) at a glassy carbon electrode (GCE) modified with a multi-walled carbon nanotube (MWCNT) composite film. Cyclic voltammetry and chronoamperometry techniques were used for diagnostic purposes. The electrode (MWCNT-film-modified GCE) exhibited excellent electrocatalytic behavior for the reduction of Fu as evidenced by the enhancement of the 4e-reduction peak current and the shift in the reduction potential to more positive potential (by 50 mV) in comparison with a bare GCE. The formal potential, E 0′, of Fu is pH dependent with a slope of 54.4 mV per unit of pH, close to the anticipated Nernestian value of −59 mV for a four-electron and four-proton processes. The transfer coefficient (α), standard rate constant of the surface reaction (k s), diffusion coefficient (D), and surface concentration (Γ) for the MWCNT-film-modified GCE were calculated. On the other hand, Fu can be accumulated effectively on the MWCNT-film-modified GCE. Under the selected experimental conditions, i.e., solution pH 6, accumulation time 10 min, and accumulation potential −0.30 V, the peak current shows a dynamic linear range 3–800 μM with detection limit 2.30 μM. The method was successfully applied to analyze pharmaceutical formulations. The method used in this study was further applied for the determination of Fu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams GE (1992) Radiat Res 132:129

    Article  CAS  Google Scholar 

  2. Greenwood D (1995) Antimicrobial chemotherapy, 13th edn. Oxford University Press, Oxford

    Google Scholar 

  3. Biaglow JE, Jarabson B, Greenstock CL, Kaleigh J (1977) Mol Pharmacol 13:269

    CAS  Google Scholar 

  4. Wong S, Joselevich E, Woolley A, Cheung C, Lieber C (1998) Nature 394:52

    Article  CAS  Google Scholar 

  5. De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179

    Article  Google Scholar 

  6. Faridbod F, Ganjali MR, Larijani B, Norouzi P (2009) Electrochim Acta 55:234

    Article  CAS  Google Scholar 

  7. Tans S, Verschueren A, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  8. Davis JJ, Cloes RJ, Hill HAO (1997) J Electroanal Chem 440:279

    CAS  Google Scholar 

  9. Cai CX, Chen J (2004) Anal Biochem 325:285

    Article  CAS  Google Scholar 

  10. Wang JJX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Anal Chem 74:1993

    Article  CAS  Google Scholar 

  11. Chen J, Bao JC, Cai CX, Lu TH (2004) Anal Chim Acta 516:29

    Article  CAS  Google Scholar 

  12. Wan Q, Wang X, Yu F, Wang X, Yang N (2009) J Appl Electrochem 39:785

    Article  CAS  Google Scholar 

  13. Wan Q, Wang X, Yu F, Wang X, Yang N (2009) J Appl Electrochem 39:1145

    Article  CAS  Google Scholar 

  14. Moghaddam AB, Ganjali MR, Saboury AA, Moosavi-Movahedi AA, Norouzi P (2008) J Appl Electrochem 38:1233

    Article  CAS  Google Scholar 

  15. Fotouhi L, Kohestanian E, Heravi MM (2006) Electrochem Commun 8:565

    Article  CAS  Google Scholar 

  16. Fotouhi L, Faramarzi S (2004) J Electroanal Chem 568:93

    Article  CAS  Google Scholar 

  17. Fotouhi L, Kiapasha L (2004) Polish J Chem 78:2175

    CAS  Google Scholar 

  18. Tocher JH, Edwards DL (1988) Free Radic Res Commun 4:269

    Article  CAS  Google Scholar 

  19. Tocher JH, Edwards DL (1992) Free Radic Res Commun 16:19

    Article  CAS  Google Scholar 

  20. Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121

    Article  CAS  Google Scholar 

  21. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  22. Salimi A, Banks CE, Compton RG (2004) Analyst 129:225

    Article  CAS  Google Scholar 

  23. Ye JS, Wen Y, Zhang WD, Cui HF, Xu GQ, Sheu FS (2005) Electroanalysis 17:89

    Article  CAS  Google Scholar 

  24. Siswana MP, Ozoemena KI, Nyokong T (2006) Electrochim Acta 52:114

    Article  CAS  Google Scholar 

  25. Salimi A, Miranzadeh L, Hallaj R (2008) Talanta 75:147

    CAS  Google Scholar 

  26. Shap M, Petersson M, Edstrom K (1979) J Electroanal Chem 95:123

    Article  Google Scholar 

  27. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  28. Miller JC, Miller JN (1992) Statistical for analytical chemistry, 2nd edn. Ellis Horwood, Chichester

    Google Scholar 

Download references

Acknowledgment

The authors express their gratitude for the financial support received from the Department of Chemistry of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lida Fotouhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotouhi, L., Nemati, M. & Heravi, M.M. Electrochemistry and voltammetric determination of furazolidone with a multi-walled nanotube composite film-glassy carbon electrode. J Appl Electrochem 41, 137–142 (2011). https://doi.org/10.1007/s10800-010-0216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0216-5

Keywords

Navigation