Skip to main content
Log in

Time averaged calculations in pulse electrochemical machining, using a strongly non-linear model

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Simulation of the Pulse Electrochemical Machining (PECM) process can provide information on system design and guidelines for practical use. The pulses that are applied to the PECM system have to be described on a time scale that can be orders of magnitude smaller than the physical time scales in the system. If the full detail of the applied pulses has to be taken into account, the time accurate calculation of the variable distribution evolutions in PECM can become a computationally very expensive procedure. In previous work of the authors, approximate techniques were introduced: the hybrid calculation and the Quasi Steady State Shortcut (QSSSC). In other previous work of the authors a model for PECM of steel in NaNO3 was introduced. This model contains a changing polarization behaviour of the double layer as a function of the metal ion surface concentration, which brings a strong non-linearity in the system. In this paper a technique is introduced to integrate the non-linear model into the approximate methods. To achieve this, the strategy of the approximate methods is extended. For the QSSSC, the non-linearity is handled using an extra convergence level. For the hybrid calculation, live averaging is used to take care of the non-linear effects. Performing this, the timesteps used during the high level calculations are no longer dictated by the pulse characteristics. Using this approach, computationally very cheap, yet satisfying results can be obtained. The technique is very general and very powerful and can be used in any multi-timescale system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Polarization parameter 1 (S m−2);

A :

Electrode surface (m2);

b :

Polarization parameter 2 (A m−2);

c :

Concentration (mol m−3);

C p :

Heat capacity (J kg−1 K−1)

D :

Diffusion coefficient (m2s−1)

E 0 :

Equilibrium potential (V)

F :

Faraday constant (= 96485 C mol−1)

h :

Heat transfer coefficient (W m−2 K−1)

I :

Electrical current (A)

J :

Current density distribution (A m−2)

k :

Thermal conductivity (W m−1 K−1)

P dl :

Heat produced, in the double layer (W m−2)

P bulk :

Heat produced in the bulk (W m−3)

Pr t :

Turbulent Prandtl number (–)

\(\overline{r}\) :

General location vector (m)

Re :

Reynolds number (–)

t :

Time (s)

T :

Pulse period (s)

U :

Potential distribution (V)

v :

Velocity (m s−1)

w :

Water depletion factor (–)

x :

Distance (m)

z :

Valence (–)

α:

Duty cycle (–)

η:

Overpotential (V)

\(\Uptheta\) :

Temperature (K)

μ:

Dynamic viscosity (kg m−1 s−1)

ρ:

Density (kg m−3)

σ:

Electrical conductivity (S m−1)

τ:

Time constant (s)

\(\Upphi_c\) :

Mass flux (mol s−1m−2)

ψ:

Pulse delay (s)

ψ*:

Optimal pulse delay (s)

2D:

two dimensional

DC:

Direct current

DNS:

Direct numerical simulation

ECM:

Electrochemical machining

FEM:

Finite elements method

PAP:

Prior averaging pulse

PECM:

Pulse electrochemical machining

QSS:

Quasi steady state

QSSSC:

Quasi steady state shortcut

RANS:

Reynolds averaged Navier-stokes

SS:

Steady state

References

  1. Boehlke T, Foerster R (2006) Electro chemical machining with oscillating tool electrode: estimation of maximum pressure. Int J Electr Eng 11:9–14

    Google Scholar 

  2. Bortels L, Purcar M, Van den Bossche B, Deconinck J (2004) A user-friendly simulation software tool for 3D ECM. J Mater Process Technol 149:486–492

    Article  Google Scholar 

  3. Clark W, McGeough J (1977) Temperature distribution along the gap in electrochemical machining. J Appl Electrochem 7:277–286

    Article  CAS  Google Scholar 

  4. Datta M, Landolt D (1981) Electrochemical machining under pulsed current conditions. Electrochim Acta 26(7):899–907

    Article  CAS  Google Scholar 

  5. Foerster R, Schoth A, Menz W (2005) Micro-ECM for production of microsystems with a high aspect ratio. Microsyst Technol 11(4–5):246–249

    Article  CAS  Google Scholar 

  6. Kozak J (2004) Thermal models of pulse electrochemical machining. Bulletin of the polish academy of sciences. Tech Sci 52(4):313–320

    CAS  Google Scholar 

  7. Kozak J, Rajurkar K (1991) Computer simulation of pulse electrochemical machining (PECM). J Mater Process Technol 28(1–2):149–157

    Article  Google Scholar 

  8. Kozak J, Rajurkar K, Lubkowski K (1997) The study of thermal limitation of electrochemical machining process. Transac NAMRI/SME XXV:159–164

  9. Lohrengel M, Klueppel I, Rosenkranz C, Betterman H, Schultze J (2003) Microscopic investigations of electrochemical machining of Fe in NaNO3. Electrochim Acta 48(20–22):3203–3211

    Article  CAS  Google Scholar 

  10. Loutrel S, Cook N (1973) A theoretical model for high rate electrochemical machining. ASME J Eng Ind 95(B/4):1003–1008

    CAS  Google Scholar 

  11. Mount A, Clifton D, Howarth P, Sherlock A (2003) An integrated strategy for materials characterisation and process simulation in electrochemical machining. J Mater Process Technol 138:449–454

    Article  CAS  Google Scholar 

  12. Nelissen G (2003) Simulation of multi-ion transport in turbulent flow. Ph.D. thesis, Vrije Universiteit Brussel, Brussels

  13. Purcar M, Bortels L, Van den Bossche B, Deconinck J (2004) 3D electrochemical machining computer simulations. J Mater Process Technol 149:472–478

    Article  CAS  Google Scholar 

  14. Purcar M, Dorochenkoa A, Bortels L, Deconinck J, Van den Bossche B (2008) Advanced CAD integrated approach for 3D electrochemical machining simulations. J Mater Process Technol 203:58–71

    Article  CAS  Google Scholar 

  15. Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in electro-chemical machining. Ann CIRP 48(2):567–579

    Article  Google Scholar 

  16. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2007) Calculation of temperature transients in pulse electrochemical machining. J Appl Electrochem 37(3):315–324

    Article  CAS  Google Scholar 

  17. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2007) Time averaged temperature calculations in pulse electrochemical machining, part I: theoretical basis. J Appl Electrochem 37(11):1345–1355

    Article  CAS  Google Scholar 

  18. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) Time averaged concentration calculations in pulse electrochemical machining. J Appl Electrochem 38(11):1577–1582

    Article  CAS  Google Scholar 

  19. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) Time averaged temperature calculations in pulse electrochemical machining, part II: numerical simulations. J Appl Electrochem 38(4):551–560

    Article  CAS  Google Scholar 

  20. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2009) Time averaged concentration calculations in pulse electrochemical machining, spectral approach. J Appl Electrochem 39(12):2481–2488

    Article  CAS  Google Scholar 

  21. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2009) Time averaged temperature calculations in pulse electrochemical machining, spectral approach. J Appl Electrochem 39(6):791–798

    Article  CAS  Google Scholar 

  22. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2010) Comment on numerical model for predicting the efficiency behaviour during pulsed electrochemical machining of steel in NaNO3 [Van Damme S et al. (2006) J Appl Electrochem 36(1):1]. J Appl Electrochem 40(1):205–207

  23. Van Damme S, Nelissen G, Van Den Bossche B, Deconinck J (2006) Numerical model for predicting the efficiency behaviour during pulsed electrochemical machining of steel in NaNO3. J Appl Electrochem 36(1):1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Smets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smets, N., Van Damme, S., De Wilde, D. et al. Time averaged calculations in pulse electrochemical machining, using a strongly non-linear model. J Appl Electrochem 40, 1395–1405 (2010). https://doi.org/10.1007/s10800-010-0116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0116-8

Keywords

Navigation