Skip to main content
Log in

A novel pulse shortcut strategy for simulating nano-second pulse electrochemical micro-machining

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nano-second pulse electrochemical micro-machining is essentially employed in high precision metal processing applications. Simulation wise, such a process involves heavy time-accurate calculations necessary to obtain the confined anodic current density distribution, crucial for the machining copy accuracy. A new alternative simulation method is presented, entitled the Pulse Shortcut Strategy (PSS), that avoids the entire time-accurate procedure and significantly reduces the computational effort and runtime. The PSS relies on calculating a current density Correction Factor (CF) that is based on the local electrolyte resistance, the interface polarization and double layer (DL) properties in combination with the nano-second pulse characteristics. The same confining effect is achieved by simulating a computationally cheap stationary current density distribution and altering it locally through the space-dependent CF. When the system has constant electrolyte resistivity, constant DL capacitance and linear polarization, the CF calculation reacts in full agreement with the time-accurate simulation results for any pulse on-time/off-time combination. The PSS accuracy is compared with full time-accurate simulations and represents a mutual validation method between the two. These results offer promising perspectives for the simulation of nano-second pulse electrochemical micro-machining, making it more attractive from a practical point of view once the general interest in the technology emerges. The approach can be generalized to other pulsating electrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Burkert S, Schulze HP, Gmelin T, Leone M (2009) The pulse electrochemical micromachining (pecmm)—specifications of the pulse units. Int J Mater Form 2:465–648

    Article  Google Scholar 

  2. Datta M, Landolt D (1981) Electrochemical machining under pulsed current conditions. Electrochim Acta 26(7):899–907

    Article  CAS  Google Scholar 

  3. Deconinck D (2012) A temperature dependent multi-ion model for numerical simulation of electrochemical processes-application to electrochemical machining. PhD thesis. Vrije Universiteit, Brussel

  4. Deconinck D, Damme SV, Deconinck J (2012a) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. part i: Theoretical basis. Electrochim Acta 60:321–328

    Article  CAS  Google Scholar 

  5. Deconinck D, Damme SV, Deconinck J (2012b) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. part ii: numerical simulation. Electrochim Acta 69:120–127

    Article  CAS  Google Scholar 

  6. Deconinck D, Hoogsteen W, Deconinck J (2013) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. part iii: experimental validation. Electrochim Acta 103:161–173

    Article  CAS  Google Scholar 

  7. Forster R, Schoth A, Menz W (2005) Micro-ecm for production of microsystems with a high aspect ratio. Microsyst Technol Micro Nanosyst Inf Stor Process Syst 11:246–249

    Google Scholar 

  8. Hotoiu E, Damme SV, Albu C, Deconinck D, Demeter A, Deconinck J (2013) Simulation of nano-second pulsed phenomena in electrochemical micromachining processes effects of the signal and double layer properties. Electrochim Acta 93:8–16

    Article  CAS  Google Scholar 

  9. Hotoiu L, Deconinck J (2013) Time-efficient simulations of nano-pulsed electrochemical micro-machining. Procedia CIRP 6:469–474

    Article  Google Scholar 

  10. Kenney JA, Hwang GS (2005) Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution. Nanotechnology 16:S309–S313

    Article  Google Scholar 

  11. Kenney JA, Hwanga GS, Shin W (2004) Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses. Appl Phys Lett 84(19):3774–3776

  12. Kirchner V, Xia X, Schuster R (2001) Electrochemical nanostructuring with ultrashort voltage pulses. Acc Chem Res 34:371–377

    Article  CAS  Google Scholar 

  13. Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochem Acta 48:3213–3219

    Article  CAS  Google Scholar 

  14. Koza JA, Sueptitz R, Uhlemann M, Schultz L, Gebert A (2011) Electrochemical micromachining of a zr-based bulk metallic glass using a micro-tool electrode technique. Intermetallics 19(4):437–444

    Article  CAS  Google Scholar 

  15. Kozak J (2004) Thermal models of pulse electrochemical machining. Bull Pol Acad Sci: Tech Sci 52(4):313–320

    CAS  Google Scholar 

  16. Kozak J, Rajurkar K (1991) Computer simulation of pulse electrochemical machining (pecm). J Materi Process Technol 28(1–2):149–157

    Article  Google Scholar 

  17. Kozak J, Rajurkar KP, Makkarb Y (2004) Selected problems of micro-electrochemical machining. J Mater Process Technol 149:426–431

    Article  CAS  Google Scholar 

  18. Kozak J, Gulbinowicz D, Gulbinowicz Z (2009) The mathematical modeling and computer simulation of pulse electrochemical micromachining. AIP Conf Proc 1127:174–185

    Article  CAS  Google Scholar 

  19. Lee ES, Baek SY, Cho CR (2005) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manufac Technol 31:762–769

    Article  Google Scholar 

  20. Lee G, Jung H, Son J, Nam K, Kwon T, Lim G, Kim YH, Seo J, Lee SW, Yoon DS (2010) Experimental and numerical study of electrochemical nanomachining using an afm cantilever tip. Nanotechnology 21:185301

  21. Lohrengel MM, Kluppel I, Rosenkranz C, Bettermann H, Schultze JW (2003) Microscopic investigations of electrochemical machining of fe in nano3. Electrochim Acta 48:3203–3211

    Article  CAS  Google Scholar 

  22. Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, Hoboken, New Jersey

    Google Scholar 

  23. Rajurkar K, Zhu D, McGeough J, Kozak J, Silva AD (1999) New developments in electro-chemical machining. CIRP Ann Manufac Technol 48(2):567–579

    Article  Google Scholar 

  24. Rajurkar KP, Zhy D, Wei B (1998) Minimization of machining allowance in electrochemical machining. Annals CIRP 47(1):165–168

    Article  Google Scholar 

  25. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachinig. Science 289:98–101

    Article  CAS  Google Scholar 

  26. Silva AD, Altena H, McGeough J (2000) Precision ecm by process characteristic modelling. CIRP Ann Manufac Technol 49(1):151–155

    Article  Google Scholar 

  27. Smets N (2009) Towards time-efficient simulations in pulse electrochemical machining. PhD Thesis. Vrije Universiteit, Brussel

  28. Smets N, Damme SV, Wilde DD, Weyns G, Deconinck J (2007) Time averaged temperature calculations in pulse electrochemical machining. part i: theoretical basis. J Appl Electrochem 37:1345–1355

    Article  CAS  Google Scholar 

  29. Smets N, Damme SV, Wilde DD, Weyns G, Deconinck J (2008) Time averaged temperature calculations in pulse electrochemical machining. part ii: numerical simulations. J Appl Electrochem 38:551–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement 262072, ECM/Micro ECM for SMEs, Research for the benefit of SMEs FP7-SME-2010-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Hotoiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotoiu, E.L., Deconinck, J. A novel pulse shortcut strategy for simulating nano-second pulse electrochemical micro-machining. J Appl Electrochem 44, 1225–1238 (2014). https://doi.org/10.1007/s10800-014-0745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0745-4

Keywords

Navigation