Skip to main content
Log in

Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A study has been carried out on the possibility of recovery light carboxylic acids (C1–C6) from an acidic waste stream by means of electrodialysis (ED) technique. The starting solution has very low concentration in organic acids and low specific conductivity. The main object of the study is the identification of the critical aspects for a complete electrodeionization of the water in a scheme of water reuse as process water or boiler feed-water. Concentration and recovery of carboxylic acids from wastewater streams can be a sustainable “green” alternative to biological degradation and turn into a valuable alternative, the more the higher the possibility of reusing the concentrated organic acid stream. In this work an ED cell was assembled and experiments were performed with acetic acid solution as model trace chemical in water. A real wastewater stream was also treated and results are discussed in term of current efficiency and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kirk RE, Othmer DF (1995) Encyclopedia of chemical technology, 6th edn. Wiley, New York

    Google Scholar 

  2. Yu L, Lin T, Guo Q, Hao J (2003) Desalination 154:147

    Article  CAS  Google Scholar 

  3. Wang Z, Luo Y, Yu P (2006) J Memb Sci 280:134

    Article  CAS  Google Scholar 

  4. Ferrer JSJ, Laborie S, Durand G, Rakib M (2006) J Memb Sci 280:509

    Article  CAS  Google Scholar 

  5. BioMatNet Item: FAIR-CT96-2000. http://www.biomatnet.org/secure/Fair/S503.htm—production of fatty acid esters usable as fuels by fermentation of biomass

  6. Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) J Memb Sci 288:1

    Article  CAS  Google Scholar 

  7. Ozaki H, Li H (2002) Water Res 36:123

    Article  CAS  Google Scholar 

  8. Weissbrodt J, Manthey M, Ditgens B, Laufenberg G, Kunz B (2001) Desalination 133:65

    Article  CAS  Google Scholar 

  9. Huang J, Guo Q, Ohya H, Fang J (1998) J Memb Sci 144:1

    Article  CAS  Google Scholar 

  10. Han IS, Cheryan M (1995) J Memb Sci 107:107

    Article  CAS  Google Scholar 

  11. Bianchi CL, Ragaini V, Pirola C, Carvoli G (2003) Appl Catal B Environ 40:93

    Article  CAS  Google Scholar 

  12. Ragaini V, Pirola C, Elli A (2004) Desalination 171:21

    Article  Google Scholar 

  13. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. MacGraw-Hill, Singapore

    Google Scholar 

  14. Liu QL, Chen HF (2002) J Memb Sci 196:171

    Article  CAS  Google Scholar 

  15. Wade NM (2001) Desalination 136:3

    Article  CAS  Google Scholar 

  16. Pulgarin C, Kiwi J (1996) Chimia 50:50

    CAS  Google Scholar 

  17. Rincon AG, Pulgarin C (2007) J Sol Energy Eng Trans ASME 129:100

    Article  CAS  Google Scholar 

  18. Torres RA, Petrier C, Combet E, Moulet F, Pulgarin C (2007) Environ Sci Technol 41:297

    Article  CAS  Google Scholar 

  19. Torres RA, Sarria V, Torres W, Peringer P, Pulgarin C (2003) Water Res 13:3118

    Article  Google Scholar 

  20. Berberidou C, Poulios I, Xekoukoulotakis NP, Mantzavinos D (2007) Appl Catal B Environ 74:63

    Article  CAS  Google Scholar 

  21. Mrowetz M, Pirola C, Selli E (2003) Ultrason Sonochem 10:247

    Article  CAS  Google Scholar 

  22. Torres RA, Nieto JI, Combet E, Petrier C, Pulgarin C (2008) Appl Catal B Environ 80:168

    Article  CAS  Google Scholar 

  23. Strathmann H, Giorno L, Drioli E (2006) An introduction to membrane science and technology. CNR, Italy

    Google Scholar 

  24. U.S. Congress, Office of Technology Assessment (1998) Using desalination technologies for water treatment, OTA-BP-O-46. U.S. Government Printing Office, Washington, DC, March 1988, p 16

  25. Fidaleo M, Moresi M (2005) Biotechnol Bioeng 91:556

    Article  CAS  Google Scholar 

  26. Fidaleo M, Moresi M (2006) J Food Eng 76:218

    Article  CAS  Google Scholar 

  27. Roux-de Balman H, Bailly M, Lutin F, Aimar P (2002) Desalination 149:399

    Article  Google Scholar 

  28. Gineste JL, Pourcelly G, Lorrain Y, Persin F, Gavach C (1996) J Memb Sci 112:199

    Article  CAS  Google Scholar 

  29. Novalic S, Kongbangkerd T, Kulbe KD (2000) J Memb Sci 166:99

    Article  CAS  Google Scholar 

  30. Bailly M (2002) Desalination 144:157

    Article  CAS  Google Scholar 

  31. Yu L, Guo Q, Hao J, Jiang W (2000) Desalination 129:283

    Article  CAS  Google Scholar 

  32. 91/271/CEE and Water Framework Directive 2000/60/EC

  33. Lutin F, Bailly M, Bar D (2002) Desalination 148:121

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Paola Tacca for Liquid chromatography analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Vertova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertova, A., Aricci, G., Rondinini, S. et al. Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes. J Appl Electrochem 39, 2051–2059 (2009). https://doi.org/10.1007/s10800-009-9871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9871-9

Keywords

Navigation