Skip to main content
Log in

Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Surface redox activities, oxygen evolution reaction (OER), oxidation of formic acid (FA), and anodic stability were investigated and compared for IrO2 electrodes prepared by two techniques: the thermal decomposition of H2IrCl6 precursor (TDIROF) and the anodic oxidation of metallic iridium (AIROF). Surface redox activities involved on the AIROF were found to be much faster than those involved on the TDIROF. Concerning the oxygen evolution reaction, both films show a similar mechanism and specific electrocatalytic activities. The situation seems to be different for FA oxidation. In fact, on TDIROF, the oxidation of FA and the OER compete involving the same surface redox couple Ir(VI)/Ir(IV) contrary to FA oxidation on AIROF, where the Ir(V)/Ir(IV) surface redox couple is involved. Finally, electrode stability measurements have shown that contrary to TDIROF, which are very stable under anodic polarization, the AIROF are rapidly corroded under anodic treatment. This corrosion is enhanced even further in the presence of formic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trasatti S, O’Grady WE (1981) In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering. Wiley, New York, p 177

  2. Comninellis Ch, Nerini A (1995) J Appl Electrochem 25:23

    Article  CAS  Google Scholar 

  3. Beck F, Schultz H (1984) Electrochim Acta 29:1569

    Article  CAS  Google Scholar 

  4. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  5. Beer H, Hinden JM (1985) EU Patent EP 0,046,449 B1

  6. Hinden JM et al (1984) US Patent 4,444,642

  7. Hüppauff M, Lengeler B (1993) J Electrochem Soc 140:598

    Article  Google Scholar 

  8. Silva TM, Simões AMP, Ferreira MGS, Walls M, Da Cunha Belo M (1998) Electroanal Chem 441:5

    Article  CAS  Google Scholar 

  9. Jaksic MM, Johansen B, Tunold R (1994) Int J Hydrogen Energy 19:321

    Article  CAS  Google Scholar 

  10. Cukman D, Vukovic M (1990) J Electroanal Chem 279:283

    Article  CAS  Google Scholar 

  11. Kötz R, Neff H, Stucki S (1984) J Electrochem Soc 131:72

    Article  Google Scholar 

  12. Kötz R (1990) In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering. Verlag Chemie, Heidelberg, p 109

  13. Fierro S, Nagel T, Baltruschat H, Comninellis Ch (2007) Electrochem Commun 9:1969

    Article  CAS  Google Scholar 

  14. Fierro S, Nagel T, Baltruschat H, Comninellis Ch (2008) Electrochem Solid-State Lett 11(7):E20

    Article  CAS  Google Scholar 

  15. Fierro S, Ouattara L, Herrera Calderon E, Comninellis Ch (2008) Electrochem Commun 10:955

    Article  CAS  Google Scholar 

  16. Trasatti S (1980) In: Trasatti S (ed) Studies in physical and theoretical chemistry: electrodes of conductive metallic oxides Part A. Elsevier Scientific Publishing Company, Amsterdam, p 155

  17. De Faria LA, Boodts JFC, Trasatti S (1996) J Appl Electrochem 26:1195

    Article  Google Scholar 

  18. Vukovic M (1990) J Appl Electrochem 20:969

    Article  CAS  Google Scholar 

  19. Gottesfeld S, Srinivasan S (1978) J Electroanal Chem 86:89

    Article  CAS  Google Scholar 

  20. Fierro S et al (2008) Electrochim Acta. doi: 10.1016/j.electacta.2008.06.060

Download references

Acknowledgments

The authors gratefully thank the Fonds National Suisse de la Recherche Scientifique for financial support as well as the Sensors, Actuators and Microsystems Laboratory, Institute of Microtechnology, University of Neuchâtel (SAMLAB-UNINE) for providing the iridium electrodes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stéphane Fierro or Christos Comninellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouattara, L., Fierro, S., Frey, O. et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J Appl Electrochem 39, 1361–1367 (2009). https://doi.org/10.1007/s10800-009-9809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9809-2

Keywords

Navigation