Skip to main content
Log in

The effect of convection in the external diffusion layer on the results of a mathematical model of multiple ion transport across an ion-selective membrane

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A previously published macrohomogeneous mathematical model of the simultaneous transport of multiple ions across an ion-selective membrane under current load based on the Nernst–Planck equation was extended. A significantly more realistic model is proposed and realised. The change with the most significant impact on the results of the model is consideration of convective mass transfer in the external diffusion layers adjacent to the membrane surfaces. This change results in a reduction of the concentration maximum previously observed in the membrane interior and highlights the importance of the external diffusion layers for ion transport across an ion-selective membrane. Hitherto this has often been underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Activity [1]

A ca :

Clarke’s equation constant [mmol−1]

c :

Molar concentration related to the volume of the solution or to the volume of the wet membrane [mol  m−3]

d e :

Equivalent diameter [m]

D :

Diffusivity [ms−1]

F :

Faraday number [96,487 C mol−1]

j :

Current density [A m−2]

k :

Membrane permeability [m2]

\(\bar k\) :

Mass transfer coefficient [m s−1]

L :

Membrane length [m]

M :

Molar weight [kg mol−1]

\(\overline M \) :

Mean molar weight of mixture [kg mol−1]

N :

Molar flux [mol m−2 s−1]

p :

Pressure [Pa]

R :

Universal gas constant [8.314 J K−1 mol−1]

T :

Temperature [K]

v:

Fluid flow velocity [m s−1]

V :

Volume [m3]

V ca :

Clarke’s equation constant [mmol−1]

x :

Molar fraction

z :

Charge number [1]

Re :

Reynolds number \(Re=\frac{vd_e \rho }{\eta }\)

Sc :

Schmidt number \(Sc=\frac{\eta }{D\rho }\)

Sh :

Sherwood number \(Sh=\frac{\bar{k}d_e }{D}\)

δ:

Thickness of Nernst diffusion or membrane layer [m]

ϕ:

Source [mol m−3 s−1]

γ:

Activity coefficient [1]

η:

Electrolyte dynamic viscosity [kg m−1 s−1]

φ:

Galvani potential [V]

μ:

Chemical potential [1]

\(\tilde {\mu }\) :

Electrochemical potential [1]

ρ:

Density [kg m−3]

τ:

Time [s]

a :

Anion

c :

Cation

ca :

Apparent component

Don :

Donnan

l i :

Length

m :

Molar

M :

Membrane

x :

Axial coordinate

s :

Solid phase

tot :

All components (including water)

a :

Apparent

l :

Liquid phase

l i :

Length

M :

Membrane

N ions :

Number of ions

N tot :

Number of all components

0:

Standard state

t :

True

References

  1. Fíla V, Bouzek K (2003) J Appl Electrochem 33:675

    Article  Google Scholar 

  2. Pletcher D, Walsh F (1990) Industrial electrochemistry. Chapman and Hall, London

    Google Scholar 

  3. Kordesch K, Simander G (1996) Fuel cells and their applications. VCH, Weinheim

    Google Scholar 

  4. Helfferich F (1962) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  5. Yeager HL, Steck A (1981) J Electrochem Soc 128:1880

    Article  CAS  Google Scholar 

  6. Yeager HL, Twardowski Z, Clarke LM (1982) J Electrochem Soc 129:324

    Article  CAS  Google Scholar 

  7. Eisenberg A and Yeager HL (eds) (1982) Perfluorinated ionomer membranes, ACS Symp. Ser. 180, American Chemical Society, Washington DC

  8. Yeo RS (1983) J Electrochem Soc 130:533

    Article  CAS  Google Scholar 

  9. Mulder M (1991) Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Schlick S (ed) (1996) Ionomers characterization theory and applications. CRC Press, New York

    Google Scholar 

  11. Divisek J, Eikerling M, Mazin V, Schmitz H, Stimming U, Volfkovich Yu M (1998) J Electrochem Soc 145:2677

    Article  Google Scholar 

  12. Haubold H.-G, Vad Th, Jungbluth H, Hiller P (2001). Electrochim Acta 46:1559

    Article  Google Scholar 

  13. Buck RP (1984) J Membr Sci 17:1

    Article  CAS  Google Scholar 

  14. Newcombe DT, Cardwell TJ, Cattrall RW, Kolev SD (1998) J Membr Sci 141:155

    Article  Google Scholar 

  15. Palatý Z, Žáková A, Doleček P (2000) J Membr Sci 165:237

    Article  Google Scholar 

  16. Kuppinger FF, Neubrand W, Rapp HJ, Eigenberger G (1995) Chem Ing Tech 67:441

    Article  Google Scholar 

  17. Sistat P, Pourcelly G (1999) J Electroanal Chem 460:53

    Article  Google Scholar 

  18. Weber AZ, Newman J (2004) Chem Rev 104:4679

    Article  Google Scholar 

  19. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637

    Article  Google Scholar 

  20. Verbrugge MW, Hill RF (1990) J Electrochem Soc 137:886

    Article  CAS  Google Scholar 

  21. Weber AZ, Newman J (2003) J Electrochem Soc 150:A1008

    Article  Google Scholar 

  22. Weber AZ, Newman J (2004) J Electrochem Soc 151:A311

    Article  Google Scholar 

  23. Weber AZ, Newman J (2004) J Electrochem Soc 151:A326

    Article  Google Scholar 

  24. Mazumder S (2005) J Electrochem Soc 152:A1633

    Article  Google Scholar 

  25. Fimrite J, Struchtrup H, Djilali N (2005) J Electrochem Soc 152:A1804

    Article  Google Scholar 

  26. Fimrite J, Struchtrup H, Djilali N (2005) J Electrochem Soc 152:A1815

    Article  Google Scholar 

  27. St-Pierre J (2007) J Electrochem Soc 154:B88

    Article  Google Scholar 

  28. Millet P (1994) Electrochim Acta 39:2501

    Article  Google Scholar 

  29. Görgün H (2006) Int J Hydrogen Energy 31:29

    Article  Google Scholar 

  30. Seko M, Yomiyama A, Ogawa A (1984) In: White RE (ed) Electrochemical cell design, Plenum Press, New York, p 135

  31. Curlin C, Bommaraju TV, Hansson CB (1991) Kirk-Othmer encyclopedia of chemical technology, vol 1. Wiley, New York, p 938

  32. Chen C-P, Tilak BV (1996) J Appl Electrochem 26:235

    Article  Google Scholar 

  33. Ogata Y, Kojima T, Uchiyama S, Yasuda M, Fine H (1989) J Electrochem Soc 136:91

    Article  CAS  Google Scholar 

  34. Pillay G (1993) Mathematical modelling of macrohomogeneous transport phenomena in ion-exchange membranes. Ph.D. Thesis, New Mexico State University

  35. Kimoto K (1983) J Electrochem Soc 130:334

    Article  CAS  Google Scholar 

  36. Chandran RR, Yeo RS, Chin D-T (1985) Electrochim Acta 30:1585

    Article  CAS  Google Scholar 

  37. Schlögl R (1966) Ber Bunsenges Phys Chem 70:400

    Google Scholar 

  38. Brumleve TR, Buck RP (1978) J Electroanal Chem 90:1

    Article  CAS  Google Scholar 

  39. Verbrugge MW, Pintauro PN (1989) In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry 19. Plenum Press, New York

  40. Verbrugge MW, Hill RF (1992) Electrochim Acta 37:221

    Article  CAS  Google Scholar 

  41. Pintauro PN, Bennion DN (1984) Ind Eng Chem Fundam 23:230

    Article  CAS  Google Scholar 

  42. Hogendoorn JA, van der Veen AJ, van der Stegen JHG, Kuipers JAM, Versteeg GF (2001) Comput Chem Eng 25:1251

    Article  Google Scholar 

  43. Auclair B, Nikonenko V, Larchet C, Métayer M, Dammak L (2002) J Membr Sci 195:89

    Article  Google Scholar 

  44. Sasidhar V, Ruckenstein E (1982) J Coll Interface Sci 85:332

    Article  CAS  Google Scholar 

  45. Yang Y, Pintauro PN (2000) AIChE J 46:1177

    Article  Google Scholar 

  46. Cwirko EH, Carbonell RG (1992) J Membr Sci 67:227

    Article  CAS  Google Scholar 

  47. Din XD, Michaelides EE (1998) AIChE J 44:35

    Article  Google Scholar 

  48. Mologin D, Khalatur P, Khokhlov A (2002) Macromol Theory Simul 11:587

    Article  Google Scholar 

  49. Jinnouchi R (2003) Microscale Thermophys Eng 7:15

    Article  Google Scholar 

  50. Paddison SJ, Paul R, Zawodzinski TA (2001) J Chem Phys 115:7753

    Article  Google Scholar 

  51. Paul R, Paddison SJ (2001) J Chem Phys 115:7762

    Article  Google Scholar 

  52. Paddison SJ, Paul R, Zawodzinski TA (2000) J Electrochem Soc 147:617

    Article  Google Scholar 

  53. Eikerling M, Kornyshev AA, Stimming U (1997) J Phys Chem B 101:10807

    Article  Google Scholar 

  54. Khalatur P, Talitskikh S, Khokhlov A (2002) Macromol Theory Simul 11:566

    Article  Google Scholar 

  55. Pismenskiy A, Nikonenko V, Urtenov M, Pourcelly G (2006) Desalination 192:374

    Article  Google Scholar 

  56. Leah RT, Brandon NP, Vesovic V, Kelsall GH (2000) J Electrochem Soc 147:4173

    Article  Google Scholar 

  57. Pitzer KS (1991) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton

    Google Scholar 

  58. van der Stegen JHG, Weerdenburg H, van der Veen AJ, Hogendoorn JA, Versteeg GF (1999) Fluid Phase Equilibria 157:181

    Article  Google Scholar 

  59. Roušar I, Hostomský J, Cezner V, Štverák B (1971) J Electrochem Soc 118:881

    Article  Google Scholar 

  60. Chen CC, Britt HI, Boston JF, Clarke WM (1983) Thermodynamic property evaluation in computer-based flowsheet simulation for aqueous electrolyte systems. AIChE Meeting, Denver

    Google Scholar 

  61. Chen CC, Britt HI, Boston JF, Evans LB (1982) AIChE J 28:588

    Article  CAS  Google Scholar 

  62. Lide DR (1997) CRC handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton

  63. Yakimenko LM, Pasmanik MI (1976) Spravochnik po Proizvodstvu Khlora, Kausticheskoi Sody i Khlorproduktov. Khimiya, Moscow, pp 197–201

    Google Scholar 

  64. Brown PN, Hindmarsh AC, Petzold LR (1995) Consistent initial condition calculation for differential-algebraic systems, LLNL Report UCRL-JC-122175

  65. IMSL Math/Library, FORTRAN Subroutines for Mathematical Applications, vol 2, Visual Numerics

Download references

Acknowledgements

Financial support by the Grant Agency of the Czech Republic under project number 203/05/0080 and by the Ministry of Education, Youth and Sports of teh Czech Republic under project number MSM6046137301 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bouzek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fíla, V., Bouzek, K. The effect of convection in the external diffusion layer on the results of a mathematical model of multiple ion transport across an ion-selective membrane. J Appl Electrochem 38, 1241–1252 (2008). https://doi.org/10.1007/s10800-008-9545-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9545-z

Keywords

Navigation