Skip to main content
Log in

Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxide films were formed at 350 °C in borate buffer solution on AISI 304 stainless steel priory abraded with wet SiC paper of different grit size. The films were characterised by Atomic Force Microscopy (AFM) and studied by capacitance, impedance, and photocurrent measurements. The images obtained by AFM microscopy show the evolution of the surface roughness of the films with increasing grit size. Capacitance measurements show that, in all cases, the electronic structure of the films is comparable to that of a p–n heterojunction. This structure is due to the development of space charge layers in the outer iron oxide region at the film/electrolyte interface and in the inner chromium oxide region at the film/metal interface. However, donor and acceptor densities are closely related to the surface roughness via the grit size of the wet SiC paper. An increase in capacitance leading to higher doping densities is manifested by an increase in grit size. These parameters are also frequency dependent. An investigation of the frequency dispersion in relation to the evolution of the surface roughness was performed by analysing the Bode plots through the impedance measurements. The photocurrent results, obtained for the oxide films formed on the different abraded AISI 304, show an increasing photoresponse with decreasing grit size. In spite of this, a constant value of the band gap energy was obtained whatever the oxide film considered. The photocurrent response near the absorption edge is also discussed. The photocurrent response at fixed wavelength and as a function of the applied potential is also influenced by the grit size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MacDonald DD, Sikora E, Sikora J (1996) Electrochim Acta 41:783

    Article  Google Scholar 

  2. Hakiki NE, Montemor MF, Ferreira MGS, Da Cunha Belo M (2000) Corros Sci 42:687

    Article  CAS  Google Scholar 

  3. Montemor MF, Ferreira MGS, Hakiki NE, Da Cunha Belo M (2000) Corros Sci 42:1635

    Article  CAS  Google Scholar 

  4. Da Cunha Belo M, Walls M, Hakiki NE, Corset J, Picquenard E, Sagon G, Nöel D (1998) Corros Sci 40:447

    Article  CAS  Google Scholar 

  5. Da Cunha Belo M, Rondot B, Compere C, Montemor MF, Simöes AMP, Ferreira MGS (1998) Corros Sci 40:481

    Article  CAS  Google Scholar 

  6. Hakiki NE, Boudin S, Rondot B, Da Cunha Belo M (1995) Corros Sci 37:1809

    Article  CAS  Google Scholar 

  7. Di Paola A, Di Quarto F, Sunseri C (1986) Corros Sci 26:935

    Article  CAS  Google Scholar 

  8. Ferreira MGS, Hakiki NE, Goodlet G, Faty S, Simöes AMP, Da Cunha Belo M (2001) Electrochim Acta 46:3767

    Article  CAS  Google Scholar 

  9. Da Cunha Belo M, Hakiki NE, Ferreira MGS (1999) Electrochim Acta 44:2473

    Article  Google Scholar 

  10. Simöes AMP, Ferreira MGS, Lorang G, Da Cunha Belo M (1991) Electrochim Acta 36:315

    Article  Google Scholar 

  11. Di Paola A (1989) Electrochim Acta 34:203

    Article  CAS  Google Scholar 

  12. Hakiki NE, Da Cunha Belo M, Simöes AMP, Ferreira MGS (1999) J Electrochem Soc 146:807

    Article  CAS  Google Scholar 

  13. Hakiki NE, Da Cunha Belo M, Simöes AMP, Ferreira MGS (1998) J Electrochem Soc 145:3821

    Article  CAS  Google Scholar 

  14. Schmuki P, Virtanen S, Isaacs HS, Ryan MP, Davenport AJ, Böhni H, Stenberg T (1998) J Electrochem Soc 145:791

    Article  CAS  Google Scholar 

  15. Hakiki NE, Da Cunha Belo M (1996) J Electrochem Soc 143:3088

    Article  CAS  Google Scholar 

  16. Schmuki P, Bohni H (1992) J Eleclrochem Soc 139:1908

    Article  CAS  Google Scholar 

  17. Simöes AMP, Ferreira MGS, Rondot B, Da Cunha Belo M (1990) J Electrochem Soc 137:82

    Article  Google Scholar 

  18. Sunseri C, Piazza S, Di Quarto F (1990) J Electrochem Soc 137:2411

    Article  CAS  Google Scholar 

  19. Schmuki P, Bohni H (1989) J Electrochem Soc 139:7

    Google Scholar 

  20. Sunseri C, Piazza S, Di Paola A, Di Quarto F (1987) J Electrochem Soc 134:2410

    Article  CAS  Google Scholar 

  21. Hakiki NE, Da Cunha Belo M (1995) CR Acad Sci Paris 320(II):613

    CAS  Google Scholar 

  22. Hakiki NE, Da Cunha Belo M (1993) CR Acad Sci Paris 317(II):457

    CAS  Google Scholar 

  23. Delnick FM, Hackermann N (1979) J Electrochem Soc 126:732

    Article  CAS  Google Scholar 

  24. Azumi K, Ohtsuka T, Sato N (1987) J Electrochem Soc 134:1352

    Article  CAS  Google Scholar 

  25. Stimming U, Schultze JW (1976) Ber Bunsenges Phys Chem 8:129

    Google Scholar 

  26. Stimming U (1987) Langmuir 3:423

    Article  CAS  Google Scholar 

  27. Dean MH, Stimming U (1987) J Electroanal Chem 228:135

    Article  CAS  Google Scholar 

  28. Gillot B, Rousset A (1986) J Solid State Chem 65:322

    Article  CAS  Google Scholar 

  29. Tapping RL, Davidson RD, McAlpine E, Lister DH (1986) Corros Sci 26:563

    Article  CAS  Google Scholar 

  30. Lister DH, Davidson RD, McAlpine E (1986) Corros Sci 27:113

    Article  Google Scholar 

  31. Robertson J (1991) Corros Sci 32:443

    Article  CAS  Google Scholar 

  32. Kim YJ (1995) Corrosion 51:849

    CAS  Google Scholar 

  33. Schuster E, Neeb KH, Ahlanger W, Henkelmann R, Jarnstrom RTJ (1988) J Nucl Mater 152:1

    Article  CAS  Google Scholar 

  34. Farrow RL, Benner RE (1983) Proc Electrochem Soc 83:190

    Google Scholar 

  35. Tjong SC (1983) Mater Res Bull 18:157

    Article  CAS  Google Scholar 

  36. Fabis P, Heidersbach R, Brown C, Rockeh T (1981) Corrosion 37:700

    CAS  Google Scholar 

  37. Johnston C (1990) Vib Spectrosc 1:87

    Article  CAS  Google Scholar 

  38. Oblonsky LJ, Devine TM (1995) Corros Sci 37:17

    Article  CAS  Google Scholar 

  39. Derek J, Gardiner C, Littleton J, Bowden M (1988) Appl Spectrosc 42:15

    Article  Google Scholar 

  40. Szklarska-Smialowska Z, Chou C, Kuo-Chin D, Xia Z, Zaizhu A (1991) Corros Sci 32:609

    Article  CAS  Google Scholar 

  41. Xia Z, Lai WK, Szklarska-Smialowska Z (1991) Corrosion 47:173

    CAS  Google Scholar 

  42. Lorang G, Da Cunha Belo M, Simões AMP, Ferreira MGS (1994) J Electrochem Soc 141:3347

    Article  CAS  Google Scholar 

  43. Simoes AMP, Ferreira MGS, Lorang G, Da Cunha Belo M (1991) Electrochim Acta 36:315

    Article  CAS  Google Scholar 

  44. Lovrecek B, Sefaja J (1972) Electrochim Acta 17:1151

    Article  CAS  Google Scholar 

  45. Mahla E, Nielsen N (1948) J Electrochem Soc 93:1

    Article  Google Scholar 

  46. Sukhotin AM, Grilikhes MS, Lisovaya EV (1989) Electrochim Acta 34:109

    Article  CAS  Google Scholar 

  47. Young L (1955) Trans Farad Soc 51:1250

    Article  CAS  Google Scholar 

  48. Sato N, Kudo K Noda T (1971) Electrochim Acta 16:1909

    Article  CAS  Google Scholar 

  49. Sholt JA, Van Geel Ch (1953) Philips Rev Rep 8:47

    Google Scholar 

  50. Dutoit EC, Van Meirhaeghe RL, Cardon F, Gomes WP (1975) Ber Bensenges Phys Chem 79:1206

    CAS  Google Scholar 

  51. Van Meirhaeghe RL, Dutoit EC, Cardon F, Gomes WP (1975) Electrochim Acta 20: 995

    Article  Google Scholar 

  52. Macdonald JR (1987) Impedance spectroscopy. Wiley, NY

    Google Scholar 

  53. Gärtner WW (1959) Phys Rev 116:84

    Article  Google Scholar 

  54. Butler MA (1977) J Appl Phys 48:1914

    Article  CAS  Google Scholar 

  55. Pankove JI (1975) Optical processes in semiconductors. Dover, NY

  56. Bube RH (1967) Photoconductivity of solids. Wiley, NY

  57. Hakiki NE, Simöes AMP, Ferreira MGS, Da Cunha Belo M (2000) Port Electrochim Acta 18:113

    Article  CAS  Google Scholar 

  58. Montemor MF, Ferreira MGS, Hakiki NE, Da Cunha Belo M (1998) Mater Sci Forum 289:1139

    Article  Google Scholar 

  59. Hakiki NE, Da Cunha Belo M (1995) CR Acad Sci Paris 320(II):463

    CAS  Google Scholar 

  60. Kennedy JH, Frese KW (1987) J Electrochem Soc 125:723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Hakiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakiki, N.E. Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel. J Appl Electrochem 38, 679–687 (2008). https://doi.org/10.1007/s10800-008-9487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9487-5

Keywords

Navigation