Skip to main content
Log in

Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of electropolished and anodised aluminium was studied by electrochemical impedance spectroscopy (EIS). Freshly electropolished aluminium behaves as a pure capacitor exhibiting Warburg impedance at low frequencies. Storage of the electropolished aluminium, even in an air-tight bottle, results in the reconstruction of a uniform compact barrier layer. The impedance response of a stored electropolished aluminium as well as anodised aluminium after oxide removal, done by chemical etching, exhibits only a capacitive loop in the complex plane. The effect of the oxide layer thickness on the impedance data was investigated for layers formed during anodising at a cell potential of 15 or 23 V. Impedance measurements carried out over a wide range of frequencies gave useful information on the efficiency of the thinning of the barrier layer at the bottom of porous aluminium oxide layers. The rate of thinning of the barrier layer was estimated for samples anodised at different voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gabrielli C (1981) Identification of electrochemical processes by frequency response analysis, Solartron instruments technical report No 004/83. Farnborough, England

    Google Scholar 

  2. Ross Macdonald J (ed) (1987) Impedance spectroscopy emphasizing solid materials and systems. A Wiley – Interscience Publication, John Wiley & Sons, New York

  3. Van der Linden B, Terryn H, Vereecken J (1990) J Appl Electrochem 20:798

    Article  Google Scholar 

  4. Frichet A, Gimenez P, Keddam M (1993) Electrochim Acta 38:1957

    Article  CAS  Google Scholar 

  5. De Laet J, Terryn H, Vereecken J (1996) Electrochim Acta 41:1155

    Article  Google Scholar 

  6. De Wit JHW, Lenderink HJW (1996) Electrochim Acta 41:1111

    Article  Google Scholar 

  7. Dimogerontakis T, Kompotiatis L, Kaplanoglou I (1998) Corros Sci 40:1939

    Article  CAS  Google Scholar 

  8. Moon S-M, Pyun S-I (1998) Electrochim Acta 43:3117

    Article  CAS  Google Scholar 

  9. Moon S-M, Pyun S-I (1998) J Solid State Electrochem 2:156

    Article  CAS  Google Scholar 

  10. Hitzig J, Jüttner K, Lorenz WJ, Paatsch W (1984) Corros Sci 24:945

    Article  CAS  Google Scholar 

  11. Hitzig J, Jüttner K, Lorenz WJ, Paatsch W (1986) J Electrochem Soc 133:887

    Article  CAS  Google Scholar 

  12. Jüttner K, Lorenz WJ, Paatsch W (1989) Corros Sci 29:279

    Article  Google Scholar 

  13. López V, González JA, Otero E, Escudero E, Morcillo M (2002) Surf Coat Technol 153:235

    Article  Google Scholar 

  14. Domingues L, Fernandes JCS, Da Cunha Belo M, Ferreira MGS, Guerra-Rosa L (2003) Corros Sci 45:149

    Article  Google Scholar 

  15. Bessone J, Mayer C, Jüttner K, Lorenz WJ (1983) Electrochim Acta 28:171

    Article  CAS  Google Scholar 

  16. Oh H-J, Jang K-W, Chi Ch-S (1999) Bull Korean Chem Soc 20:1340

    CAS  Google Scholar 

  17. Oh H-J, Jeong Y, Suh S-J, Kim Y-J, Chi ch-S (2003) J Phys Chem Solids 64:2219

    Article  ADS  CAS  Google Scholar 

  18. Gervasi CA, Vilche JR (1992) Electrochim Acta 37:1389

    Article  CAS  Google Scholar 

  19. Goeminne G, Terryn H, Vereecken J (1995) Electrochim Acta 40:479

    Article  CAS  Google Scholar 

  20. Bonnel K, Le Pen C, Pébère N (1999) Electrochim Acta 44:4259

    Article  CAS  Google Scholar 

  21. Siva Kumar C, Shankar Rao V, Raja VS, Sharma AK, Mayanna SM (2002) Corros Sci 44:387

    Article  CAS  Google Scholar 

  22. Suay JJ, Giménez E, Rodríguez T, Habbib K, Saura JJ (2003) Corros Sci 45:611

    Article  CAS  Google Scholar 

  23. Sulka GD, Stroobants S, Moshchalkov V, Borghs G, Celis J-P (2002) J Electrochem Soc 149:D97

    Article  CAS  Google Scholar 

  24. Nielsch K, Müller F, Li A-P, Gösele U (2000) Adv Mater 13:582

    Article  Google Scholar 

  25. Xu D, Xu Y, Chen D, Guo G, Gui L, Tang Y (2000) Chem Phys Lett 325:340

    Article  CAS  Google Scholar 

  26. Wernick S, Pinner R, Sheasby PG (1987) The surface treatment and finishing of aluminium and its alloys, 5th edn, vol I. ASM International, Finishing Publication LTD, p 289

  27. Armstrong RD, Edmondson K (1973) Electrochim Acta 18:937

    Article  CAS  Google Scholar 

  28. Kim Y-S, Pyun S-I, Moon S-M, Kim J-D (1996) Corros Sci 38:329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Flemish Science Foundation (contract FWO G.0299.99) and by the Flemish Government (BIL-Poland 00/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Sulka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulka, G.D., Moshchalkov, V., Borghs, G. et al. Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium. J Appl Electrochem 37, 789–797 (2007). https://doi.org/10.1007/s10800-007-9312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-007-9312-6

Keywords

Navigation