Skip to main content
Log in

Economic role of online review filtering systems in the electronic marketplaces

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

The monetary effects of online reviews motivate firms to manipulate such reviews, and electronic marketplaces then adopt online review filtering systems to combat manipulation. We develop an analytical model to explore the role of a filtering system for a monopoly firm, electronic marketplaces and consumer surplus in the monopoly context and then extend it to the symmetrical competition context to explore whether competition changes the role of the filtering system. The results show that the existence of such a filtering system strengthens the possibility of manipulation by the monopoly firm when the intelligence of the filtering system is relatively low. However, in the competitive context, whether the existence of such a filtering system strengthens the possibility of manipulation by both firms relates to the difference between the total consumer base with manipulation under no filtering system and that under the filtering system. We also find that in the monopoly context, the electronic marketplace will adopt the filtering system only when the intelligence of the filtering system is relatively low and the unit misfit cost is moderate. However, in the competitive context, the intelligence of the filtering system is irrelevant to whether the electronic marketplace adopts the filtering system. Finally, the adoption of the filtering system always benefits consumers in both the monopoly and competing contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. BrightLocal. Local Consumer Review Survey 2023. https://www.brightlocal.com/research/local-consumer-review-

    survey/(accessed on 2023-04-27).

  2. Womply Research. How online reviews impact small business revenue. https://www.womply.com/impact-of-online-

    reviews-on-small-business-revenue/(accessed on 2023-04-27).

  3. BrightLocal. Local Consumer Review Survey 2023. https://www.brightlocal.com/research/local-consumer-review-

    survey/(accessed on 2023-04-27).

  4. Tripadvisor Insights. How Does the Tripadvisor Review Tracking System Work? https://www.tripadvisor.com/TripAdvisor

    Insights/w3690(accessed on 2023-04-27).

  5. Yelp Support Center. Why would a review not be recommended? https://www.yelp-support.com/article/Why-would-a-

    review-not-be-recommended(accessed on 2023-04-27).

  6. Taobao. https://rule.taobao.com/detail-4075.html(accessed on 2023-04-27).

References

  1. Aköz KK, Arbatli CE, Çelik L (2020) Manipulation through biased product reviews. J Ind Eco 68(4):591–639

    Article  Google Scholar 

  2. Ananthakrishnan UM, Li B, Smith M (2020) A tangled web: should online review portals display fraudulent reviews? Inform Syst Res 31(3):950–971

    Article  Google Scholar 

  3. Cao H (2020) Online review manipulation by asymmetrical firms: is a firm’s manipulation of online reviews always detrimental to its competitor? Inform Manag 57:1–16

    Article  Google Scholar 

  4. Cao H, Jiang J, Geng X (2022) How online reviews interact with a firm’s free version strategy. Inform Manag 59:1–28

    Article  Google Scholar 

  5. Chen J, Guo Z, Huang J (2022) An economic analysis of rebates conditional on positive reviews. Inf Syst Res 33(1):224–243

    Article  Google Scholar 

  6. Chen W, Gu B, Ye Q, Zhu KQ (2019) Measuring and managing the externality of managerial responses to online customer reviews. Inf Syst Res 30(1):81–96

    Article  Google Scholar 

  7. Chevalier J, Mayzlin D (2006) The effect of word of mouth on sales: online book reviews. J Mark Res 43(3):345–354

    Article  Google Scholar 

  8. Dellarocas C (2006) Strategic manipulation of Internet opinion forums: implications for consumers and firms. Manage Sci 52(10):1577–1593

    Article  Google Scholar 

  9. Dellarocas C, Zhang XQ, Awad NF (2007) Exploring the value of online product reviews in forecasting sales: the case of motion pictures. J Interact Mark 21(4):2–20

    Article  Google Scholar 

  10. Deng H, Wang W, Lim KH (2022) Repairing integrity-based trust violations in ascription disputes for potential e-commerce customers. MIS Q 46(4):1983–2014

    Article  Google Scholar 

  11. Duan WJ, Gu B, Whinston AB (2008) Do online reviews matter?—An empirical investigation of panel data. Decis Support Syst 45(4):1007–1016

    Article  Google Scholar 

  12. Dunn JR, Schweitzer ME (2005) Feeling and believing: the influence of emotion on trust. J Pers Soc Psychol 88(5):736–748

    Article  PubMed  Google Scholar 

  13. Feng J, Li X (2011) Rising or dropping: the consumer review-oriented pricing paradox. In: International conference on information Systems, Shanghai

  14. Forman C, Ghose A, Wiesenfeld B (2008) Examining the relationship between reviews and sales: the role of reviewer identity disclosure in electronic markets. Inf Syst Res 19(3):291–313

    Article  Google Scholar 

  15. Gefen D, Straub KDW (2003) Trust and TAM in online shopping: an integrated model. MIS Q 27(1):51–90

    Article  Google Scholar 

  16. He J, Wang X, Vandenbosch MB, Nault BR (2020) Revealed preference in online reviews: purchase verification in the tablet market. Decis Support Syst 132:1–10

    Article  Google Scholar 

  17. Hu N, Liu L, Sambamurthy V (2011) Fraud detection in online consumer reviews. Decis Support Syst 50(3):614–626

    Article  Google Scholar 

  18. Kim RK (2021) When does online review matter to consumers? The effect of product quality information cues. Electron Commer Res 21:1011–1030

    Article  ADS  Google Scholar 

  19. Kwark Y, Chen J, Raghunathan S (2014) Online product reviews: implications for retailers and competing manufacturers. Inf Syst Res 25(1):93–110

    Article  Google Scholar 

  20. Kwark Y, Chen J, Raghunathan S (2017) Platform or wholesale? A strategic tool for online retailers to benefit from third-party information. MIS Q 41(3):763–785

    Article  Google Scholar 

  21. Kwark Y, Chen J, Raghunathan S (2018) User-generated content and competing firms’ product design. Manage Sci 64(10):4471–4965

    Google Scholar 

  22. Kumar N, Venugopal D, Qiu L, Kumar S (2018) Detecting review manipulation on online platforms with hierarchical supervised learning. J Manag Inf Syst 35(1):350–380

    Article  Google Scholar 

  23. Lappas T, Sabnis G, Valkanas G (2016) The impact of fake reviews on online visibility: a vulnerability assessment of the hotel industry. Inf Syst Res 27(4):940–961

    Article  Google Scholar 

  24. Lee SY, Qiu L, Whinston A (2018) Sentiment manipulation in online platforms: an analysis of movie tweets. Prod Oper Manag 27(3):393–416

    Article  Google Scholar 

  25. Li L, Chen J, Raghunathan S (2020) Informative role of recommender systems in electronic marketplaces: a boon or a bane for competing sellers? MIS Q 44(4):1957–1985

    Article  Google Scholar 

  26. Li L, Chen J, Raghunathan S (2018) Recommender system rethink: implications for an electronic marketplace with competing manufacturers. Inf Syst Res 29(4):1003–1023

    Article  Google Scholar 

  27. Li X, Wu C, Mai F (2019) The effect of online reviews on product sales: a joint sentiment-topic analysis. Inform Manag 56(2):172–184

    Article  Google Scholar 

  28. Li XX, Hitt LM (2010) Price effects in online product reviews: An analytical model and empirical analysis. MIS Q 34(4):809–832

    Article  Google Scholar 

  29. Li Y, Li G, Tayi GK, Cheng TCE (2019) Omni-channel retailing: do offline retailers benefit from online reviews? Int J Prod Eco 218:43–61

    Article  CAS  Google Scholar 

  30. Liu CZ, Au YA, Choi HS (2014) Effects of freemium strategy in the mobile app market: an empirical study of Google Play. J Manag Inf Syst 31(3):326–354

    Article  Google Scholar 

  31. Liu Y (2006) Word of mouth for movies: its dynamics and impact on box office revenue. J Mark 70(3):74–89

    Article  Google Scholar 

  32. Liu Y, Pang B (2018) A unified framework for detecting author spamicity by modeling review deviation. Expert Syst Appl 112:148–155

    Article  Google Scholar 

  33. Luca M, Zervas G (2016) Fake it till you make it: reputation, competition, and yelp review fraud. Manage Sci 62(12):3412–3427

    Article  Google Scholar 

  34. Mayzlin D (2006) Promotional chat on the internet. Mark Sci 25(2):155–163

    Article  Google Scholar 

  35. Mayzlin D, Dover Y, Chevalier J (2014) Promotional reviews: an empirical investigation of online review manipulation. Am Eco Rev 104(8):2421–2455

    Article  Google Scholar 

  36. Mcknight DH, Choudhury V, Kacmar C (2002) Developing and validating trust measures for e-commerce: an integrative typology. Inf Syst Res 13(3):334–359

    Article  Google Scholar 

  37. Nie C, Zheng Z, Sarkar S (2022) Competing with the sharing economy: Incumbents’ manipulation of consumer opinions. MIS Q 46(3):1573–1602

    Article  Google Scholar 

  38. Pavlou PA, Dimoka A (2006) The nature and role of feedback text comments in online marketplaces: Implications for trust building, price premiums, and seller differentiation. Inf Syst Res 17(4):392–414

    Article  Google Scholar 

  39. Pu J, Nian T, Qiu L, Cheng HK (2022) Platform policies and sellers’ competition in agency selling in the presence of online quality misrepresentation. J Manag Inf Syst 39(1):159–186

    Article  Google Scholar 

  40. Seckler M, Heinz S, Forde S, Tuch AN, Opwis K (2015) Trust and distrust on the web: user experiences and website characteristics. Comput Hum Behav 45:39–50

    Article  Google Scholar 

  41. Sun N (2012) How does the variance of product ratings matter? Manage Sci 58(4):696–707

    Article  Google Scholar 

  42. Yang B, Liu Y, Liang Y, Tang M (2019) Exploiting user experience from online customer reviews for product design. Int J Inf Manage 46:173–186

    Article  CAS  Google Scholar 

  43. Ye Q, Law R, Gu B (2009) The impact of online user reviews on hotel room sales. Int J Hosp Manag 28(1):180–182

    Article  Google Scholar 

  44. Zhang D, Zhou L, Kehoe JL, Kilic IY (2016) What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews. J Manag Inf Syst 33(2):456–481

    Article  Google Scholar 

  45. Zhao Y, Yang S, Narayan V, Zhao Y (2013) Modeling consumer learning from online product reviews. Mark Sci 32(1):153–169

    Article  Google Scholar 

  46. Zhu F, Zhang XQ (2010) Impact of online consumer reviews on sales: the moderating role of product and consumer characteristics. J Mark 74(2):133–148

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Zhejiang Provincial Philosophy and Social Science Planning Project (Grant No. 23NDJC096YB), Zhejiang Provincial Natural Science Foundation (Grant No. LQ21G010003), and the National Natural Science Foundation of China (Grant No. 72371227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1: Proof of Lemma 1

Proof

We derive the equilibrium results case by case.

  1. (a)

    Case NN and Case FN.

If the monopoly firm decides not to manipulate online reviews, then the case in which the electronic marketplace adopts a filtering system (i.e., Case FN) is equivalent to that in which the electronic marketplace does not adopt a filtering system (i.e., Case NN). Therefore, here, we discuss only Case NN.

In this case, the monopoly firm’s optimization problem is as follows:

$$\underset{{{\text{p}}}_{{\text{NN}}}}{{\text{max}}}{\uppi }_{{\text{NN}}}=(1-\mathrm{\alpha }){{\text{D}}}_{{\text{NN}}}{{\text{p}}}_{{\text{NN}}}$$

The monopoly firm's optimization problem is characterized by first-order conditions as follows:

$$\frac{\partial {\uppi }_{{\text{NN}}}}{\partial {{\text{p}}}_{{\text{NN}}}}=\frac{\left(1-\mathrm{\alpha }\right)({\text{q}}-2{{\text{p}}}_{{\text{NN}}})}{{\text{t}}}=0$$

Based on these equations, we can derive the equilibrium as follows:

$${p}_{NN}^{*}=\frac{q}{2}$$

Substituting the equilibrium prices into Eqs. (1) and (2), we can derive the equilibrium profits of the monopoly firm and electronic marketplace. Note that with no firm manipulation, the case with no filtering system is actually the same as that with the filtering system. Additionally, condition \({\text{t}}>\frac{{\text{q}}}{2}\) is used to ensure that the firm cannot cover the whole market, even with manipulation.

  1. (b)

    Case NM

In this case, the monopoly firm’s optimization problem is as follows:

$$\underset{{{\text{p}}}_{{\text{NM}}},{{\text{e}}}_{{\text{NM}}}}{{\text{max}}}{\uppi }_{{\text{NM}}}=(1-\mathrm{\alpha }){{\text{D}}}_{{\text{NM}}}{{\text{p}}}_{{\text{NM}}}-\upbeta {{\text{e}}}_{{\text{NM}}}^{2}$$

The monopoly firm's optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\frac{\partial {\uppi }_{{\text{NM}}}}{\partial {{\text{p}}}_{{\text{NM}}}}=\frac{\left(1-\mathrm{\alpha }\right)\uptheta }{{\text{t}}}\left({\text{q}}+{{\text{e}}}_{{\text{NM}}}-2{{\text{p}}}_{{\text{NM}}}\right)=0\\ \frac{\partial {\uppi }_{{\text{NM}}}}{\partial {{\text{e}}}_{{\text{NM}}}}=\frac{(1-\mathrm{\alpha })\uptheta {{\text{p}}}_{{\text{NM}}}}{{\text{t}}}-2\beta {{\text{e}}}_{{\text{NM}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$$\left\{\begin{array}{c}{p}_{NM}^{*}=\frac{2\beta tq}{4\beta t-\left(1-\alpha \right)\theta }\\ {{\text{e}}}_{{\text{NM}}}^{*}=\frac{(1-\mathrm{\alpha })\mathrm{\theta q}}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta }\end{array}\right.$$

Substituting the equilibrium prices into Eqs. (1) and (2), we can derive the equilibrium profits of the monopoly firm and electronic marketplace. Additionally, condition \({\text{t}}>\frac{{\text{q}}}{2}+\frac{\uptheta \left(1-\mathrm{\alpha }\right)}{4\upbeta }\) is used to ensure that the firm cannot cover the whole market, even with manipulation.

  1. (c)

    Case FM

In this case, the monopoly firm’s optimization problem is as follows:

$$\underset{{{\text{p}}}_{{\text{FM}}},{{\text{e}}}_{{\text{FM}}}}{{\text{max}}}{\uppi }_{{\text{FM}}}=(1-\mathrm{\alpha }){{\text{D}}}_{{\text{FM}}}{{\text{p}}}_{{\text{FM}}}-\upbeta {{\text{e}}}_{{\text{FM}}}^{2}$$

The monopoly firm's optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\frac{\partial {\uppi }_{{\text{FM}}}}{\partial {{\text{p}}}_{{\text{FM}}}}=\frac{\left(1-\mathrm{\alpha }\right){\uptheta }_{\upgamma }}{{\text{t}}}\left({\text{q}}+(1-\upgamma ){{\text{e}}}_{{\text{FM}}}-2{{\text{p}}}_{{\text{FM}}}\right)=0\\ \frac{\partial {\uppi }_{{\text{FM}}}}{\partial {{\text{e}}}_{{\text{FM}}}}=\frac{(1-\mathrm{\alpha }){\uptheta }_{\upgamma }{{\text{p}}}_{{\text{FM}}}}{{\text{t}}}-2\beta {{\text{e}}}_{{\text{FM}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$$\left\{\begin{array}{c}{{\text{p}}}_{{\text{FM}}}^{*}=\frac{2\mathrm{\beta tq}}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }}\\ {{\text{e}}}_{{\text{FM}}}^{*}=\frac{\left(1-\mathrm{\alpha }\right)(1-\upgamma ){\theta }_{\gamma }q}{4\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\theta }_{\gamma }}\end{array}\right.$$

Substituting the equilibrium prices into Eqs. (1) and (2), we can derive the equilibrium profits of the monopoly firm and electronic marketplace. Additionally, condition \({\text{t}}>\frac{{\text{q}}}{2}+\frac{{\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}}{4\upbeta }\) is used to ensure that the firm cannot cover the whole market, even with manipulation.\(\square\)

1.2 A2: Proof of Proposition 1

Proof

We discuss the monopoly firm’s manipulation decision without and with the filtering system.

  1. (a)

    If the electronic marketplace does not adopt the filtering system, then the monopoly firm will manipulate online reviews when \({\uppi }_{{\text{NM}}}^{*}=\frac{(1-\mathrm{\alpha })\mathrm{\theta \beta }{{\text{q}}}^{2}}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta }>{\pi }_{NN}^{*}=\frac{\left(1-\alpha \right){q}^{2}}{4t}\). Thus, we have that \({\text{t}}<{{\text{t}}}_{1}\).

  2. (b)

    If the electronic marketplace adopts the filtering system, then the monopoly firm will manipulate online reviews when \({\uppi }_{{\text{FM}}}^{*}=\frac{\left(1-\mathrm{\alpha }\right)\upbeta {\theta }_{\gamma }{q}^{2}}{4\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\theta }_{\gamma }}>{\pi }_{NN}^{*}=\frac{\left(1-\alpha \right){q}^{2}}{4t}\). Thus, we have that \({\text{t}}<{{\text{t}}}_{2}\).

\(\square\)

1.3 A3 Proof of Corollary 1

Proof

From Proposition 1, we know that when \({\text{t}}<{{\text{t}}}_{1}\), the monopoly firm will manipulate online reviews without the filtering system, and when \({\text{t}}<{{\text{t}}}_{2}\), the monopoly firm will manipulate online reviews with the filtering system. Therefore, when \({{\text{t}}}_{1}>{{\text{t}}}_{2}\) (i.e., \(\upgamma >{\upgamma }_{1}\)), there exists a region where the monopoly manipulates online reviews without the filtering system but does not manipulate online reviews with the filtering system. Therefore, the existence of the filtering system reduces the possibility of manipulation by the monopoly firm. When \({{\text{t}}}_{1}<{{\text{t}}}_{2}\) (i.e., \(\upgamma <{\upgamma }_{1}\)), there exists a region where the monopoly does not manipulate online reviews without the filtering system but manipulates online reviews with the filtering system. Therefore, the existence of the filtering system strengthens the possibility of manipulation by the monopoly firm.\(\square\)

1.4 A4 Proof of Proposition 2

Proof: Based on the different values of \(\upgamma\), we have two subcases.

Proof

(1) When \(\upgamma >{\upgamma }_{1}\), we have that \({{\text{t}}}_{2}<{{\text{t}}}_{1}\). Therefore, we have three subcases. First, when \({\text{t}}<{{\text{t}}}_{2}\), the monopoly firm will manipulate online reviews both without and with the filtering system. The electronic marketplace will adopt the filtering system when \({\uppi }_{{\text{PNM}}}^{*}=\frac{4\mathrm{t\alpha \theta }{\upbeta }^{2}{{\text{q}}}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta ]}^{2}}<{\uppi }_{{\text{PFM}}}^{*}=\frac{4\mathrm{t\alpha }{\theta }_{\gamma }{\upbeta }^{2}{q}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){\left(1-\upgamma \right)}^{2}{\theta }_{\gamma }]}^{2}}\). Thus, we have that \({\text{t}}>{{\text{t}}}_{3}\). However, in this case, \({t}_{3}\) is always larger than \({t}_{2}\). Therefore, the electronic marketplace will not adopt the filtering system. Second, when \({{\text{t}}}_{2}<t<{{\text{t}}}_{1}\), the monopoly firm will manipulate online reviews without the filtering system and will not manipulate online reviews with the filtering system. The electronic marketplace will adopt the filtering system when \({\uppi }_{{\text{PNM}}}^{*}=\frac{4\mathrm{t\alpha \theta }{\upbeta }^{2}{{\text{q}}}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta ]}^{2}}<{\pi }_{PFN}^{*}=\frac{\alpha {q}^{2}}{4t}\). Thus, we have \({\text{t}}>\frac{\left(1-\mathrm{\alpha }\right)\uptheta }{4\upbeta (1-\sqrt{\uptheta })}\). Because \(\frac{\left(1-\mathrm{\alpha }\right)\uptheta }{4\upbeta (1-\sqrt{\uptheta })}>\frac{(1-\mathrm{\alpha })\uptheta }{4\upbeta (1-\uptheta )}\), the electronic marketplace will not adopt the filtering system. Third, when \({\text{t}}>{{\text{t}}}_{1}\), the monopoly firm will not manipulate online reviews either without or with the filtering system. Therefore, the electronic marketplace will not adopt the filtering system. In summary, when \(\upgamma >{\upgamma }_{1}\), the electronic marketplace will not adopt the filtering system.

(2) When \(\upgamma <{\upgamma }_{1}\), we have that \({{\text{t}}}_{1}<{{\text{t}}}_{2}\). Therefore, we also have three subcases. First, when \({\text{t}}<{{\text{t}}}_{1}\), the monopoly firm will manipulate online reviews both without and with the filtering system. The electronic marketplace will adopt the filtering system when \({\uppi }_{{\text{PNM}}}^{*}=\frac{4\mathrm{t\alpha \theta }{\upbeta }^{2}{{\text{q}}}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta ]}^{2}}<{\uppi }_{{\text{PFM}}}^{*}=\frac{4\mathrm{t\alpha }{\theta }_{\gamma }{\upbeta }^{2}{q}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){\left(1-\upgamma \right)}^{2}{\theta }_{\gamma }]}^{2}}\). Thus, we have that \({\text{t}}>{{\text{t}}}_{3}\). Therefore, when \({\text{min}}\{{{\text{t}}}_{3},{{\text{t}}}_{1}\}<t<{{\text{t}}}_{1}\), the electronic marketplace will adopt the filtering system. Second, when \({{\text{t}}}_{1}<t<{{\text{t}}}_{2}\), the monopoly firm will not manipulate online reviews without the filtering system and will manipulate online reviews with the filtering system. The electronic marketplace will adopt the filtering system when \({\pi }_{PNN}^{*}=\frac{\alpha {q}^{2}}{4t}<{\uppi }_{{\text{PFM}}}^{*}=\frac{4\mathrm{t\alpha }{\theta }_{\gamma }{\upbeta }^{2}{q}^{2}}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){\left(1-\upgamma \right)}^{2}{\theta }_{\gamma }]}^{2}}\). Thus, we have that \({\text{t}}<\frac{{\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}}{4\upbeta (1-\sqrt{{\uptheta }_{\upgamma }})}\). Because \(\frac{{\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}}{4\upbeta (1-\sqrt{{\uptheta }_{\upgamma }})}>{{\text{t}}}_{2}\), the electronic marketplace will adopt the filtering system when \({{\text{t}}}_{1}<t<{{\text{t}}}_{2}\). Third, when \({\text{t}}>{{\text{t}}}_{2}\), the monopoly firm will not manipulate online reviews either without or with the filtering system. Therefore, the electronic marketplace will not adopt the filtering system. In summary, when \(\upgamma <{\upgamma }_{1}\), the electronic marketplace will adopt the filtering system when \({\text{min}}\{{{\text{t}}}_{3},{{\text{t}}}_{1}\}<t<{t}_{2}\).\(\square\)

1.5 A5: Proof of Lemma 2

Proof

We derive consumer surplus on a case-by-case basis.

  1. (a)

    Case NN and Case FN

If the firm decides not to manipulate online reviews, then the case in which the electronic marketplace adopts a filtering system (i.e., Case FN) is equivalent to that in which the electronic marketplace does not adopt a filtering system (i.e., Case NN). Therefore, we discuss only Case NN.

The consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{NN}}}^{*}=\frac{{\text{q}}}{2}\), and that with the lowest consumer surplus is zero. Moreover, the number of consumers who buy the product is \({{\text{D}}}_{{\text{NN}}}=\frac{{\text{q}}}{2{\text{t}}}\). Therefore, consumer surplus in Case NN is \(\frac{1}{2}\times \left(\frac{{\text{q}}}{2}+0\right)\times {{\text{D}}}_{{\text{NN}}}=\frac{{{\text{q}}}^{2}}{8{\text{t}}}\).

  1. (b)

    Case NM

The consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{MN}}}^{*}={\text{q}}-\frac{2\beta tq}{4\beta t-\left(1-\alpha \right)\theta }\), and that with the lowest consumer surplus is zero. Moreover, the number of consumers who buy the product is \({{\text{D}}}_{{\text{MN}}}=\frac{2\mathrm{\beta q\theta }}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right)\uptheta }\). Therefore, consumer surplus in Case MN is \(\frac{1}{2}\times \left({\text{q}}-\frac{2\beta tq}{4\beta t-\left(1-\alpha \right)\theta }+0\right)\times {{\text{D}}}_{{\text{MN}}}=\frac{\mathrm{\theta \beta }{{\text{q}}}^{2}[2\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{{[4\beta t-\left(1-\alpha \right)\theta ]}^{2}}\).

  1. (c)

    Case FM

The consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{FM}}}^{*}={\text{q}}-\frac{2\mathrm{\beta tq}}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }}\), and that with the lowest consumer surplus is zero. Moreover, the number of consumers who buy the product is \({{\text{D}}}_{{\text{FM}}}=\frac{2\mathrm{\beta q}{\theta }_{\gamma }}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }}\). Therefore, consumer surplus in Case MN is \(\frac{1}{2}\times \left({\text{q}}-\frac{2\mathrm{\beta tq}}{4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }}+0\right)\times {{\text{D}}}_{{\text{FM}}}=\frac{{\uptheta }_{\upgamma }\upbeta {{\text{q}}}^{2}[2\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}^{2}}\).\(\square\)

1.6 A6: Proof of Proposition 3

Proof

From Proposition 2, we know that the electronic marketplace will adopt the filtering system only when \(\upgamma <{\upgamma }_{1}\mathrm{and min}\{{{\text{t}}}_{3},{{\text{t}}}_{1}\}<t<{{\text{t}}}_{2}\). Therefore, we need only to discuss the effect of the filtering system on consumer surplus when the electronic marketplace adopts the filtering system.

When \(\upgamma <1-\sqrt{\frac{\uptheta (1-{\uptheta }_{\upgamma })}{{\uptheta }_{\upgamma }(1-\uptheta )}}\), we have two subcases. First, when \({\text{min}}\{{{\text{t}}}_{3},{{\text{t}}}_{1}\}<t<{{\text{t}}}_{1}\), the electronic marketplace will adopt the filtering system. In this case, consumer surplus in Case FM (i.e., \(\frac{{\uptheta }_{\upgamma }\upbeta {{\text{q}}}^{2}[2\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}^{2}}\)) is always larger than that in Case NM (i.e., \(\frac{\mathrm{\theta \beta }{{\text{q}}}^{2}[2\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{{[4\beta t-\left(1-\alpha \right)\theta ]}^{2}}\)). Second, when \({{\text{t}}}_{1}<t<{{\text{t}}}_{2}\), the electronic marketplace will adopt the filtering system. In this case, consumer surplus in Case FM (i.e., \(\frac{{\uptheta }_{\upgamma }\upbeta {{\text{q}}}^{2}[2\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}{{[4\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\theta }_{\gamma }]}^{2}}\)) is always lower than that in Case NN (i.e., \(\frac{{{\text{q}}}^{2}}{8{\text{t}}}\)).\(\square\)

1.7 A7: Proof of Lemma 3

Proof

We derive the equilibrium results on a case-by-case basis.

  1. (a)

    Case AA and Case FA

If the firm decides not to manipulate online reviews, then the case in which the electronic marketplace adopts a filtering system (i.e., Case FA) is equivalent to that in which the electronic marketplace does not adopt a filtering system (i.e., Case AA). Therefore, we discuss only Case AA.

With no firm manipulation, from Eq. (3), we derive the demand for each product as follows:

$$\left\{\begin{array}{c}{{\text{D}}}_{{\text{AAA}}}=\frac{1}{2}-\frac{\left({{\text{p}}}_{{\text{AAA}}}-{{\text{p}}}_{{\text{BAA}}}\right)}{2{\text{t}}}\\ {{\text{D}}}_{{\text{BAA}}}=\frac{1}{2}+\frac{\left({{\text{p}}}_{{\text{AAA}}}-{{\text{p}}}_{{\text{BAA}}}\right)}{2{\text{t}}}\end{array}\right.$$

In this case, firms choose the optimal prices to maximize their profits in stage 3 of the game:

$$\left\{\begin{array}{c}\underset{{p}_{\mathit{AAA}}}{\mathit{max}}{\pi }_{AAA}=\left(1-\alpha \right){D}_{AAA}{p}_{AAA}\\ \underset{{p}_{\mathit{BAA}}}{\mathit{max}}{\pi }_{BAA}=(1-\alpha ){D}_{BAA}{p}_{BAA}\end{array}\right.$$

Firms’ optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\frac{\partial {\uppi }_{{\text{AAA}}}}{\partial {{\text{p}}}_{{\text{AAA}}}}=\frac{\left(1-\mathrm{\alpha }\right)(-2{{\text{p}}}_{{\text{AAA}}}+{{\text{p}}}_{{\text{BAA}}}+{\text{t}})}{2{\text{t}}}=0\\ \frac{\partial {\uppi }_{{\text{BAA}}}}{{\partial {\text{p}}}_{{\text{BAA}}}}=\frac{\left(1-\mathrm{\alpha }\right)({{\text{p}}}_{{\text{AAA}}}-2{{\text{p}}}_{{\text{BAA}}}+{\text{t}})}{2{\text{t}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$${{\text{p}}}_{{\text{AAA}}}^{*}={{\text{p}}}_{{\text{BAA}}}^{*}={\text{t}}$$

Substituting the equilibrium prices into Eqs. (4) and (5), we can derive the equilibrium profits of firms and the electronic marketplace.

  1. (b)

    Case AO

Due to symmetry, the case in which Firm A manipulates online reviews is equivalent to that in which Firm B manipulates online reviews. Therefore, here, we consider only the case in which only Firm A manipulates online reviews.

In this case, we derive the demand for each product as follows:

$$\left\{\begin{array}{c}{{\text{D}}}_{{\text{AAO}}}=\theta [\frac{1}{2}+\frac{{{\text{e}}}_{{\text{AAO}}}-\left({{\text{p}}}_{{\text{AAO}}}-{{\text{p}}}_{{\text{BAO}}}\right)}{2{\text{t}}}]\\ {{\text{D}}}_{{\text{BAO}}}=\theta [\frac{1}{2}-\frac{{{\text{e}}}_{{\text{AAO}}}-\left({{\text{p}}}_{{\text{AAO}}}-{{\text{p}}}_{{\text{BAO}}}\right)}{2{\text{t}}}]\end{array}\right.$$

In this case, the firms’ optimization problem is as follows:

$$\left\{\begin{array}{c}\underset{{p}_{\mathit{AAO}, {e}_{\mathit{AAO}}}}{\mathit{max}}{\pi }_{AAO}=\left(1-\alpha \right){D}_{AAO}{p}_{AAO}-\beta {e}_{AAO}^{2}\\ \underset{{p}_{\mathit{BAO}}}{\mathit{max}}{\pi }_{BAO}=(1-\alpha ){D}_{BAO}{p}_{BAO}\end{array}\right.$$

Firms’ optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\frac{\partial {\uppi }_{{\text{AAO}}}}{\partial {{\text{p}}}_{{\text{AAO}}}}=\theta \left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}+\frac{{{\text{e}}}_{{\text{AAO}}}-{{\text{p}}}_{{\text{AAO}}}+{{\text{p}}}_{{\text{BAO}}}}{2{\text{t}}}\right)-\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{AAO}}}}{2{\text{t}}}=0\\ \frac{\partial {\uppi }_{{\text{AAO}}}}{\partial {{\text{e}}}_{{\text{AAO}}}}=\frac{\uptheta {(1-\mathrm{\alpha }){\text{p}}}_{{\text{AAO}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{AAO}}}=0\\ \frac{\partial {\uppi }_{{\text{BAO}}}}{{\partial {\text{p}}}_{{\text{BAO}}}}=\theta \left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}-\frac{{{\text{e}}}_{{\text{AAO}}}-{{\text{p}}}_{{\text{AAO}}}+{{\text{p}}}_{{\text{BAO}}}}{2{\text{t}}}\right)-\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{BAO}}}}{2{\text{t}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$$\left\{\begin{array}{l}{{\text{p}}}_{{\text{AAO}}}^{*}=\frac{12\upbeta {{\text{t}}}^{2}}{12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta }\\ {{\text{p}}}_{{\text{BAO}}}^{*}=\frac{12\upbeta {{\text{t}}}^{2}-2\mathrm{t\theta }(1-\mathrm{\alpha })}{12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta }\end{array}\right.$$
$${{\text{e}}}_{{\text{AAO}}}^{*}=\frac{3{\text{t}}(1-\mathrm{\alpha })\uptheta }{12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta }$$

Substituting the equilibrium prices and equilibrium effort of the inferior firm into Eqs. (4) and (5), we can derive the equilibrium profits of firms and the electronic marketplace. To ensure that both firms stay in the market and play a role in the equilibrium, \({{\text{p}}}_{{\text{AAO}}}^{*}\) and \({{\text{p}}}_{{\text{BAO}}}^{*}\) should be larger than zero. Thus, we have that \({\text{t}}>\frac{(1-\mathrm{\alpha })\uptheta }{6\upbeta }\).

  1. (c)

    Case AB

In this case, we derive the demand for each product as follows:

$$\left\{\begin{array}{c}{{\text{D}}}_{{\text{AAB}}}=\theta \Bigg[\frac{1}{2}+\frac{({{\text{e}}}_{{\text{AAB}}}-{{\text{e}}}_{{\text{BAB}}})-\left({{\text{p}}}_{{\text{AAB}}}-{{\text{p}}}_{{\text{BAB}}}\right)}{2{\text{t}}}\Bigg]\\ {{\text{D}}}_{{\text{BAB}}}=\theta \Bigg[\frac{1}{2}-\frac{({{\text{e}}}_{{\text{AAB}}}-{{\text{e}}}_{{\text{BAB}}})-\left({{\text{p}}}_{{\text{AAB}}}-{{\text{p}}}_{{\text{BAB}}}\right)}{2{\text{t}}}\Bigg]\end{array}\right.$$

In this case, the firms’ optimization problem is as follows:

$$\left\{\begin{array}{c}\underset{{p}_{\mathit{AAB}, {e}_{\mathit{AAB}}}}{\mathit{max}}{\pi }_{AAB}=\left(1-\alpha \right){D}_{AAB}{p}_{AAB}-\beta {e}_{AAB}^{2}\\ \underset{{p}_{\mathit{BAB}}, {e}_{\mathit{BAB}}}{\mathit{max}}{\pi }_{BAB}=(1-\alpha ){D}_{BAB}{p}_{BAB}-\beta {e}_{BAB}^{2}\end{array}\right.$$

Firms’ optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\begin{array}{c}\frac{\partial {\uppi }_{{\text{AAB}}}}{\partial {{\text{p}}}_{{\text{AAB}}}}=\theta \left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}+\frac{{{\text{e}}}_{{\text{AAB}}}-{{\text{e}}}_{{\text{BAB}}}-{{\text{p}}}_{{\text{AAB}}}+{{\text{p}}}_{{\text{BAB}}}}{2{\text{t}}}\right)-\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{AAB}}}}{2{\text{t}}}=0\\ \frac{\partial {\uppi }_{{\text{AAB}}}}{\partial {{\text{e}}}_{{\text{AAB}}}}=\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{AAB}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{AAB}}}=0\\ \frac{\partial {\uppi }_{{\text{BAB}}}}{{\partial {\text{p}}}_{{\text{BAB}}}}=\theta \left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}-\frac{{{\text{e}}}_{{\text{AAB}}}-{{\text{e}}}_{{\text{BAB}}}-{{\text{p}}}_{{\text{AAB}}}+{{\text{p}}}_{{\text{BAB}}}}{2{\text{t}}}\right)-\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{BAB}}}}{2{\text{t}}}=0\end{array}\\ \frac{\partial {\uppi }_{{\text{BAB}}}}{\partial {{\text{e}}}_{{\text{BAB}}}}=\frac{\uptheta (1-\mathrm{\alpha }){{\text{p}}}_{{\text{BAB}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{BAB}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$${{\text{p}}}_{{\text{AAB}}}^{*}={{\text{p}}}_{{\text{BAB}}}^{*}={\text{t}}$$
$${{\text{e}}}_{{\text{AAB}}}^{*}={{\text{e}}}_{{\text{BAB}}}^{*}=\frac{(1-\mathrm{\alpha })\uptheta }{4\upbeta }$$

Substituting the equilibrium prices and equilibrium effort of the inferior firm into Eqs. (4) and (5), we can derive the equilibrium profits of firms and the electronic marketplace.

  1. (d)

    Case FO

In this case, we derive the demand for each product as follows:

$$\left\{\begin{array}{c}{{\text{D}}}_{{\text{AFO}}}={\uptheta }_{\upgamma }\Bigg[\frac{1}{2}+\frac{(1-\upgamma ){{\text{e}}}_{{\text{AFO}}}-\left({{\text{p}}}_{{\text{AFO}}}-{{\text{p}}}_{{\text{BFO}}}\right)}{2{\text{t}}}\Bigg]\\ {{\text{D}}}_{{\text{BFO}}}={\uptheta }_{\upgamma }\Bigg[\frac{1}{2}-\frac{(1-\upgamma ){{\text{e}}}_{{\text{AFO}}}-\left({{\text{p}}}_{{\text{AFO}}}-{{\text{p}}}_{{\text{BFO}}}\right)}{2{\text{t}}}\Bigg]\end{array}\right.$$

In this case, the firms’ optimization problem is as follows:

$$\left\{\begin{array}{l}\underset{{p}_{\mathit{AFO}, {e}_{\mathit{AFO}}}}{\mathit{max}}{\pi }_{AFO}=\left(1-\alpha \right){D}_{AFO}{p}_{AFO}-\beta {e}_{AFO}^{2}\\ \underset{{p}_{\mathit{BFO}}}{\mathit{max}}{\pi }_{BFO}=(1-\alpha ){D}_{BFO}{p}_{BFO}\end{array}\right.$$

Firms’ optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\frac{\partial {\uppi }_{{\text{AFO}}}}{\partial {{\text{p}}}_{{\text{AFO}}}}={\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}+\frac{(1-\upgamma ){{\text{e}}}_{{\text{AFO}}}-{{\text{p}}}_{{\text{AFO}}}+{{\text{p}}}_{{\text{BFO}}}}{2{\text{t}}}\right)-\frac{{\uptheta }_{\upgamma }(1-\mathrm{\alpha }){{\text{p}}}_{{\text{AFO}}}}{2{\text{t}}}=0\\ \frac{\partial {\uppi }_{{\text{AFO}}}}{\partial {{\text{e}}}_{{\text{AFO}}}}=\frac{{\uptheta }_{\upgamma }(1-\upgamma ){(1-\mathrm{\alpha }){\text{p}}}_{{\text{AFO}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{AFO}}}=0\\ \frac{\partial {\uppi }_{{\text{BFO}}}}{{\partial {\text{p}}}_{{\text{BFO}}}}={\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}-\frac{(1-\upgamma ){{\text{e}}}_{{\text{AFO}}}-{{\text{p}}}_{{\text{AFO}}}+{{\text{p}}}_{{\text{BFO}}}}{2{\text{t}}}\right)-\frac{{\uptheta }_{\upgamma }(1-\mathrm{\alpha }){{\text{p}}}_{{\text{BFO}}}}{2{\text{t}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$$\left\{\begin{array}{l}{{\text{p}}}_{{\text{AFO}}}^{*}=\frac{12\upbeta {{\text{t}}}^{2}}{12\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }}\\ {{\text{p}}}_{{\text{BFO}}}^{*}=\frac{2{\text{t}}(6\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){\left(1-\upgamma \right)}^{2}{\uptheta }_{\upgamma })}{12\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }}\end{array}\right.$$
$${{\text{e}}}_{{\text{AFO}}}^{*}=\frac{3{\text{t}}\left(1-\mathrm{\alpha }\right)(1-\upgamma ){\uptheta }_{\upgamma }}{12\mathrm{\beta t}-(1-\mathrm{\alpha }){{(1-\upgamma )}^{2}\uptheta }_{\upgamma }}$$

Substituting the equilibrium prices and equilibrium effort of the inferior firm into Eqs. (4) and (5), we can derive the equilibrium profits of firms and the electronic marketplace. To ensure that both firms stay in the market and play a role in the equilibrium, \({{\text{p}}}_{{\text{AFO}}}^{*}\) and \({{\text{p}}}_{{\text{BFO}}}^{*}\) should be larger than zero. Thus, we have that \({\text{t}}>\frac{\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }}{6\upbeta }\).

  1. (e)

    Case FB

In this case, we derive the demand for each product as follows:

$$\left\{\begin{array}{c}{{\text{D}}}_{{\text{AFB}}}={\uptheta }_{\upgamma }\Bigg[\frac{1}{2}+\frac{(1-\upgamma )({{\text{e}}}_{{\text{AFB}}}-{{\text{e}}}_{{\text{BFB}}})-\left({{\text{p}}}_{{\text{AFB}}}-{{\text{p}}}_{{\text{BFB}}}\right)}{2{\text{t}}}\Bigg]\\ {{\text{D}}}_{{\text{BFB}}}={\uptheta }_{\upgamma }\Bigg[\frac{1}{2}-\frac{(1-\upgamma )({{\text{e}}}_{{\text{AFB}}}-{{\text{e}}}_{{\text{BFB}}})-\left({{\text{p}}}_{{\text{AFB}}}-{{\text{p}}}_{{\text{BFB}}}\right)}{2{\text{t}}}\Bigg]\end{array}\right.$$

In this case, the firms’ optimization problem is as follows:

$$\left\{\begin{array}{c}\underset{{p}_{\mathit{AFB}, {e}_{\mathit{AFB}}}}{\mathit{max}}{\pi }_{AFB}=\left(1-\alpha \right){D}_{AFB}{p}_{AFB}-\beta {e}_{AFB}^{2}\\ \underset{{p}_{\mathit{BFB}}, {e}_{\mathit{BFB}}}{\mathit{max}}{\pi }_{BFB}=(1-\alpha ){D}_{BFB}{p}_{BFB}-\beta {e}_{BFB}^{2}\end{array}\right.$$

Firms’ optimization problem is characterized by first-order conditions as follows:

$$\left\{\begin{array}{c}\begin{array}{c}\frac{\partial {\uppi }_{{\text{AFB}}}}{\partial {{\text{p}}}_{{\text{AFB}}}}={\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}+\frac{(1-\upgamma )({{\text{e}}}_{{\text{AFB}}}-{{\text{e}}}_{{\text{BFB}}})-{{\text{p}}}_{{\text{AFB}}}+{{\text{p}}}_{{\text{BFB}}}}{2{\text{t}}}\right)-\frac{{\uptheta }_{\upgamma }(1-\mathrm{\alpha }){{\text{p}}}_{{\text{AFB}}}}{2{\text{t}}}=0\\ \frac{\partial {\uppi }_{{\text{AFB}}}}{\partial {{\text{e}}}_{{\text{AFB}}}}=\frac{{\uptheta }_{\upgamma }(1-\upgamma )(1-\mathrm{\alpha }){{\text{p}}}_{{\text{AFB}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{AFB}}}=0\\ \frac{\partial {\uppi }_{{\text{BFB}}}}{{\partial {\text{p}}}_{{\text{BFB}}}}={\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)\left(\frac{1}{2}-\frac{{(1-\upgamma )({\text{e}}}_{{\text{AFB}}}-{{\text{e}}}_{{\text{BFB}}})-{{\text{p}}}_{{\text{AFB}}}+{{\text{p}}}_{{\text{BFB}}}}{2{\text{t}}}\right)-\frac{{\uptheta }_{\upgamma }(1-\mathrm{\alpha }){{\text{p}}}_{{\text{BFB}}}}{2{\text{t}}}=0\end{array}\\ \frac{\partial {\uppi }_{{\text{BFB}}}}{\partial {{\text{e}}}_{{\text{BFB}}}}=\frac{{\uptheta }_{\upgamma }(1-\upgamma )(1-\mathrm{\alpha }){{\text{p}}}_{{\text{BFB}}}}{2{\text{t}}}-2\beta {{\text{e}}}_{{\text{BFB}}}=0\end{array}\right.$$

Based on these equations, we can derive the equilibrium as follows:

$${{\text{p}}}_{{\text{AFB}}}^{*}={{\text{p}}}_{{\text{BFB}}}^{*}={\text{t}}$$
$${{\text{e}}}_{{\text{AFB}}}^{*}={{\text{e}}}_{{\text{BFB}}}^{*}=\frac{\left(1-\mathrm{\alpha }\right)(1-\upgamma ){\uptheta }_{\upgamma }}{4\upbeta }$$

Substituting the equilibrium prices and equilibrium effort of the inferior firm into Eqs. (4) and (5), we can derive the equilibrium profits of firms and the electronic marketplace.\(\square\)

1.8 A8: Proof of Proposition 4

Proof

(1) If the electronic marketplace does not adopt the filtering system, then the following table summarizes the four cases under no filtering system.

 

Firm A’s manipulation decision

Firm A manipulates

Firm A does not manipulate

Firm B’s manipulation decision

Firm B manipulates

\(\bigg(\frac{\left(1-\mathrm{\alpha }\right)\uptheta [8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{16\upbeta }, \frac{\left(1-\mathrm{\alpha }\right)\uptheta [8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{16\upbeta }\Bigg)\)

\(\bigg(\frac{2\mathrm{t\theta }\left(1-\mathrm{\alpha }\right){[6\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}, \frac{9\mathrm{\beta \theta }{{\text{t}}}^{2}\left(1-\mathrm{\alpha }\right)[8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}\bigg)\)

Firm B does not manipulate

\(\bigg(\frac{9\mathrm{\beta \theta }{{\text{t}}}^{2}\left(1-\mathrm{\alpha }\right)[8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}, \frac{2\mathrm{t\theta }\left(1-\mathrm{\alpha }\right){[6\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}\bigg)\)

\(\bigg(\frac{\left(1-\mathrm{\alpha }\right){\text{t}}}{2}, \frac{\left(1-\mathrm{\alpha }\right){\text{t}}}{2}\bigg)\)

If Firm A manipulates online reviews, then Firm B’s best response is to manipulate online reviews because \(\frac{\left(1-\mathrm{\alpha }\right)\uptheta [8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{16\upbeta }\) is always larger than \(\frac{2\mathrm{t\theta }\left(1-\mathrm{\alpha }\right){[6\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}\) on the condition of \({\text{t}}>max\{\frac{(1-\mathrm{\alpha })\uptheta }{6\upbeta },\frac{(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }}{6\upbeta }\}\), which is used to ensure that both firms play a role in the equilibrium. If Firm A does not manipulate online reviews, Firm B will manipulate online reviews when \(\uptheta >\frac{8}{9} and \overline{{t }_{1}}<t<\overline{{t }_{2}}\); otherwise, Firm B will not manipulate online reviews. The reason for this is that \(\frac{9\mathrm{\beta \theta }{{\text{t}}}^{2}\left(1-\mathrm{\alpha }\right)[8\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha })\uptheta ]}^{2}}\mathrm{is larger than }\frac{\left(1-\mathrm{\alpha }\right){\text{t}}}{2}\) only when \(\uptheta >\frac{8}{9} and \overline{{t }_{1}}<t<\overline{{t }_{2}}\). Due to symmetry, Firm A’s best response to Firm B’s manipulation decision is the same as that of Firm B. Therefore, both firms will manipulate online reviews only when \(\uptheta >\frac{8}{9} and \overline{{t }_{1}}<t<\overline{{t }_{2}}\); otherwise, both firms will not manipulate online reviews.

(2) If the electronic marketplace adopts the filtering system, then the following table summarizes the four cases under no filtering system.

 

Firm A’s manipulation decision

Firm A manipulates

Firm A does not manipulate

Firm B’s manipulation decision

Firm B manipulates

\(\bigg(\frac{\left(1-\mathrm{\alpha }\right){\uptheta }_{\upgamma }[8\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}{16\upbeta }, \frac{\left(1-\mathrm{\alpha }\right){\uptheta }_{\upgamma }[8\mathrm{\beta t}-\left(1-\mathrm{\alpha }\right){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}{16\upbeta }\bigg)\)

\(\bigg(\frac{2{\text{t}}{\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right){[6\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}, \frac{9\upbeta {{{\text{t}}}^{2}\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)[8\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}\bigg)\)

Firm B does not manipulate

\(\bigg(\frac{9\upbeta {{{\text{t}}}^{2}\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right)[8\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}, \frac{2{\text{t}}{\uptheta }_{\upgamma }\left(1-\mathrm{\alpha }\right){[6\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}{{[12\mathrm{\beta t}-(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }]}^{2}}\bigg)\)

\(\bigg(\frac{\left(1-\mathrm{\alpha }\right){\text{t}}}{2}, \frac{\left(1-\mathrm{\alpha }\right){\text{t}}}{2}\bigg)\)

Using the same logic as that for the case in which the electronic marketplace does not adopt the filtering system, we can derive that both firms will manipulate online reviews with the filtering system when \({\uptheta }_{\upgamma }>\frac{8}{9}\mathrm{ and }\overline{{t }_{3}}<t<\overline{{t }_{4}}\).\(\square\)

1.9 A9: Proof of Corollary 2

Proof

(1) When \({\theta }_{\gamma }>\frac{8}{9}>\theta\), both firms will not manipulate online reviews without the filtering system and will manipulate online reviews with the filtering system where \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\). Therefore, in this case, the existence of the filtering system strengthens the possibility of manipulation by competing firms.

(2) When \({\theta }_{\gamma }>\theta >\frac{8}{9}\), both firms will manipulate online reviews without the filtering system when \(\overline{{t }_{1}}<t<\overline{{t }_{2}}\), and both firms will manipulate online reviews with the filtering system when \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\). Therefore, the existence of the filtering system strengthens the possibility of manipulation by competing firms when \(\overline{{t }_{2}}-\overline{{t }_{1}}<\overline{{t }_{3}}-\overline{{t }_{4}}\). Thus, we have that \({\uptheta }_{\upgamma }>\overline{\uptheta }\). Otherwise, the existence of the filtering system hinders manipulation by competing firms.\(\square\)

1.10 A10: Proof of Proposition 5

Proof

We discuss the adoption decision of the filtering system of the electronic marketplace in three cases within the condition of \({\text{t}}>max\{\frac{(1-\mathrm{\alpha })\uptheta }{6\upbeta },\frac{(1-\mathrm{\alpha }){(1-\upgamma )}^{2}{\uptheta }_{\upgamma }}{6\upbeta }\}\).

(1) When \(\uptheta <{\uptheta }_{\upgamma }<\frac{8}{9}\), both firms will not manipulate online reviews regardless of the existence of the filtering system. Therefore, the electronic marketplace will not adopt the filtering system.

(2) When \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\), both firms will not manipulate online reviews without the filtering system and will manipulate online reviews with the filtering system when \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\). Therefore, when \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\) and \(t<\overline{{t }_{3}}\) or \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\) and \(t>\overline{{t }_{4}}\), the electronic marketplace will not adopt the filtering system. When \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\) and \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\), the profit for the electronic marketplace without the filtering system is \(\mathrm{\alpha t}\), and the profit for the electronic marketplace with the filtering system is \(\mathrm{\alpha t}{\uptheta }_{\upgamma }\). Therefore, when \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\) and \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\), the electronic marketplace will not adopt the filtering system because \(\mathrm{\alpha t}{\uptheta }_{\upgamma }\) is always lower than \(\mathrm{\alpha t}\). In summary, when \(\uptheta <{\frac{8}{9}<\uptheta }_{\upgamma }\), the electronic marketplace will not adopt the filtering system.

(3) When \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\), both firms will manipulate online reviews without the filtering system when \(\overline{{t }_{1}}<t<\overline{{t }_{2}}\) and will manipulate online reviews with the filtering system when \(\overline{{t }_{3}}<t<\overline{{t }_{4}}\). Because \(\overline{{t }_{3}}\) is always lower than \(\overline{{t }_{1}}\) and \(\overline{{t }_{2}}\) could be lower or larger than \(\overline{{t }_{4}}\), we should discuss the two subcases. First, when \(\overline{{t }_{2}}<\overline{{t }_{4}}\), we have \(\overline{{t }_{3}}<\overline{{t }_{1}}<\overline{{t }_{2}}<\overline{{t }_{4}}\). When \({\text{t}}<\overline{{t }_{3}}\) and \({\text{t}}>\overline{{t }_{4}}\), both firms will not manipulate online reviews regardless of the existence of the filtering system. Therefore, the electronic marketplace will not adopt the filtering system. When \(\overline{{t }_{3}}<{\text{t}}<\overline{{t }_{1}}\) and \(\overline{{t }_{2}}<{\text{t}}<\overline{{t }_{4}}\), both firms will not manipulate online reviews without the filtering system and will manipulate online reviews with the filtering system. Therefore, the electronic marketplace will not adopt the filtering system because the profit under no manipulation without the filtering system (\(\mathrm{\alpha t}\)) is always higher than that under manipulation with the filtering system (\(\mathrm{\alpha t}{\uptheta }_{\upgamma }\)). When \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\), both firms will manipulate online reviews regardless of the existence of the filtering system. Therefore, the electronic marketplace will adopt the filtering system because the profit under manipulation without the filtering system (\(\mathrm{\alpha t\theta }\)) is always lower than that under manipulation with the filtering system (\(\mathrm{\alpha t}{\uptheta }_{\upgamma }\)). Second, when \(\overline{{t }_{2}}>\overline{{t }_{4}}\), we have \(\overline{{t }_{3}}<\overline{{t }_{1}}<\overline{{t }_{4}}<\overline{{t }_{2}}\). When \({\text{t}}<\overline{{t }_{3}}\) and \({\text{t}}>\overline{{t }_{2}}\), both firms will not manipulate online reviews regardless of the existence of the filtering system. Therefore, the electronic marketplace will not adopt the filtering system. When \(\overline{{t }_{3}}<{\text{t}}<\overline{{t }_{1}}\), both firms will not manipulate online reviews without the filtering system and will manipulate online reviews with the filtering system. Therefore, the electronic marketplace will not adopt the filtering system because the profit under no manipulation without the filtering system (\(\mathrm{\alpha t}\)) is always higher than that under manipulation with the filtering system (\(\mathrm{\alpha t}{\uptheta }_{\upgamma }\)). When \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{4}}\), both firms will manipulate online reviews regardless of the existence of the filtering system. Therefore, the electronic marketplace will adopt the filtering system because the profit under manipulation without the filtering system (\(\mathrm{\alpha t\theta }\)) is always lower than that under manipulation with the filtering system (\(\mathrm{\alpha t}{\uptheta }_{\upgamma }\)). When \(\overline{{t }_{4}}<{\text{t}}<\overline{{t }_{2}}\), both firms will manipulate online reviews without the filtering system and will not manipulate online reviews with the filtering system. Therefore, the electronic marketplace will adopt the filtering system because the profit under manipulation without the filtering system (\(\mathrm{\alpha t\theta }\)) is always lower than that under no manipulation with the filtering system (\(\mathrm{\alpha t}\)). In summary, when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\), the electronic marketplace will adopt the filtering system when \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\).

In summary, the electronic marketplace will adopt the filtering system when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\).\(\square\)

1.11 A11: Proof of Corollary 3

Proof

We compare the electronic marketplace’s adoption of the filtering system in the monopoly context with that in the competing context in the common region (i.e., \({\text{t}}>\widehat{t}\)). However, we have \(\overline{{t }_{1}}<\frac{\uptheta \left(1-\mathrm{\alpha }\right)}{4\upbeta }<\frac{{\text{q}}}{2}+\frac{\uptheta \left(1-\mathrm{\alpha }\right)}{4\upbeta }\). Thus, in the common region (\({\text{t}}>\widehat{t}\)), the electronic marketplace will adopt the filtering system when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\widehat{t}<{\text{t}}<\overline{{t }_{2}}\).

First, when competition promotes the electronic marketplace’s adoption of the filtering system, the electronic marketplace adopts the filtering system in a competing context and does not adopt the filtering system in a monopoly context. When \(\upgamma >{\upgamma }_{1}\), the electronic marketplace does not adopt the filtering system in the monopoly context and adopts the filtering system in the competing context when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\widehat{t}<{\text{t}}<\overline{{t }_{2}}\). When \(\upgamma <{\upgamma }_{1}\), the electronic marketplace does not adopt the filtering system in the monopoly context when \(\widehat{t}<{\text{t}}<min\{{t}_{1},{t}_{3}\}\) or \(t>{t}_{2}\) and adopts the filtering system in the competing context when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\widehat{t}<{\text{t}}<\overline{{t }_{2}}\). Therefore, competition promotes the electronic marketplace’s adoption of the filtering system when \({\theta }_{\gamma }>\theta >\frac{8}{9}\) and \(\upgamma >{\upgamma }_{1}\) and \(\widehat{t}<t<\overline{{t }_{2}}\) or \({\theta }_{\gamma }>\theta >\frac{8}{9}\) and \(\upgamma <{\upgamma }_{1}\) and \(\widehat{t}<t<min\{\overline{{t }_{2}}, min\{{t}_{1},{t}_{3}\}\}\).

Second, using the same logic in the case where competition promotes the electronic marketplace’s adoption of the filtering system, we can obtain the condition where competition hinders the electronic marketplace’s adoption of the filtering system when \(\theta {<\theta }_{\gamma }<\frac{8}{9}\) and \(\upgamma <{\upgamma }_{1}\) and \(min\{{t}_{1},{t}_{3}\}<t<{t}_{2}\) or \(\theta <\frac{8}{9}<{\theta }_{\gamma }\) and \(\upgamma <{\upgamma }_{1}\) and \(min\{{t}_{1},{t}_{3}\}<t<{t}_{2}\) or \({\theta }_{\gamma }>\theta >\frac{8}{9}\) and \(\upgamma <{\upgamma }_{1}\) and \(max\{\overline{{t }_{2}}, min\{{t}_{1},{t}_{3}\}\}<t<{t}_{2}\).\(\square\)

1.12 A12: Proof of Lemma 4

Proof

We derive consumer surplus in the competing context on a case-by-case basis.

  1. (a)

    Case AA and Case FA

If the firm decides not to manipulate online reviews, then the case in which the electronic marketplace adopts a filtering system (i.e., Case AA) is equivalent to that in which the electronic marketplace does not adopt a filtering system (i.e., Case AA). Therefore, we discuss only Case AA.

Due to symmetry, the consumer surplus of consumers who buy from Firm A is the same as that of those who buy from Firm B. For Firm A, the consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{AAA}}}^{*}={\text{q}}-{\text{t}}\), and the consumer with the lowest consumer surplus is zero. The number of consumers who buy the product is \({{\text{D}}}_{{\text{AAA}}}=\frac{1}{2}\). Therefore, the consumer surplus of consumers who buy from Firm A in Case AA is \(\frac{1}{2}\times \left({\text{q}}-{\text{t}}+0\right)\times {{\text{D}}}_{{\text{AAA}}}=\frac{{\text{q}}-{\text{t}}}{4}\). Furthermore, total consumer surplus is \(2\times \frac{{\text{q}}-{\text{t}}}{4}=\frac{{\text{q}}-{\text{t}}}{2}\).

  1. (b)

    Case AB

Due to symmetry, the consumer surplus of consumers who buy from Firm A is the same as that of those who buy from Firm B. For Firm A, the consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{AAB}}}^{*}={\text{q}}-{\text{t}}\), and the consumer with the lowest consumer surplus is zero. The number of consumers who buy the product is \({{\text{D}}}_{{\text{AAB}}}=\frac{\uptheta }{2}\). Therefore, the consumer surplus of consumers who buy from Firm A in Case AA is \(\frac{1}{2}\times \left({\text{q}}-{\text{t}}\right)\times {{\text{D}}}_{{\text{AAB}}}=\uptheta (\frac{{\text{q}}-{\text{t}}}{4})\). Furthermore, total consumer surplus is \(2\times\uptheta (\frac{{\text{q}}-{\text{t}}}{4})=\frac{\uptheta ({\text{q}}-{\text{t}})}{2}\).

  1. (c)

    Case FB

Due to symmetry, the consumer surplus of consumers who buy from Firm A is the same as that of those who buy from Firm B. For Firm A, the consumer with the highest consumer surplus is \({\text{q}}-{{\text{P}}}_{{\text{AFB}}}^{*}={\text{q}}-{\text{t}}\), and the consumer with the lowest consumer surplus is zero. The number of consumers who buy the product is \({{\text{D}}}_{{\text{AAB}}}=\frac{{\uptheta }_{\upgamma }}{2}\). Therefore, the consumer surplus of consumers who buy from Firm A in Case AA is \(\frac{1}{2}\times \left({\text{q}}-{\text{t}}\right)\times {{\text{D}}}_{{\text{AAB}}}={\uptheta }_{\upgamma }(\frac{{\text{q}}-{\text{t}}}{4})\). Furthermore, total consumer surplus is \(2\times {\uptheta }_{\upgamma }(\frac{{\text{q}}-{\text{t}}}{4})=\frac{{\uptheta }_{\upgamma }({\text{q}}-{\text{t}})}{2}\).\(\square\)

1.13 A13: Proof of Proposition 6

Proof

From Proposition 5, we know that the electronic marketplace will adopt the filtering system when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\). Under the condition that \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\), both firms will manipulate online reviews without the filtering system. Therefore, in this case, consumer surplus is \(\frac{\uptheta ({\text{q}}-{\text{t}})}{2}\). However, with the filtering system, both firms will either manipulate or not manipulate online reviews when \(\frac{8}{9}<\uptheta {<\uptheta }_{\upgamma }\) and \(\overline{{t }_{1}}<{\text{t}}<\overline{{t }_{2}}\). Consumer surplus with the filtering system under both choices of competing firms (\(\frac{{\uptheta }_{\upgamma }({\text{q}}-{\text{t}})}{2}\) or \(\frac{{\text{q}}-{\text{t}}}{2}\)) is always higher than that without the filtering system.\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Wu, D. & Gu, Y. Economic role of online review filtering systems in the electronic marketplaces. Inf Technol Manag (2024). https://doi.org/10.1007/s10799-024-00416-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10799-024-00416-3

Keywords

Navigation