Skip to main content
Log in

Reward mechanisms for P2P VoIP networks

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

As we have seen, P2P VoIP software, such as Skype, has emerged from the current generation of telecommunication systems. However, establishing communication applications based on P2P networks without considering the operational models of the Internet presents potential dangers. In this study, we treat a VoIP telephone conversation as a dynamic game and compare the ex post reward mechanism with the ex ante reward mechanism in forward versus discard and QoS routing. Our simulation results point out that the ex post reward mechanism is better than the ex ante reward mechanism in forward versus discard; however, the opposite holds true in QoS routing when the expected number of periods is sufficiently large. In addition, this study considers the reward mechanisms and the platform provider’s benefit to find the optimal number of supernodes in a transmission path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y-M, Tan Y, Zhou Y-P (2008) Analysis of scale effects in peer-to-peer networks. IEEE Trans Netw 16(3):590–602

    Article  Google Scholar 

  2. Rao B, Angelov B (2006) Fusion of disruptive technologies: lessons from the Skype case. Eur Manag J 24(2–3):174–188

    Article  Google Scholar 

  3. Goncalves R, Ribeiro R (2005) Skype and the new regulatory framework. Commun Stratég 59:141–158

    Google Scholar 

  4. Sigurdsson HM, Halldorsson UR, Hasslinger G (2007) Potentials and challenges of peer-to-peer based content distribution. Telemat Inform 24(4):348–365

    Article  Google Scholar 

  5. Li J (2008) On peer-to-peer (P2P) content delivery. Peer-to-Peer Netw Appl 1:45–63

    Article  Google Scholar 

  6. Baset SA, Schulzrinne HG (2006) An analysis of the skype peer-to-peer internet telephony protocol. In: Proceedings of 25th IEEE international conference on computer communications (IEEE INFOCOM ‘06)

  7. Hoßfeld T, Binzenhöfer A (2008) Analysis of Skype VoIP traffic in UMTS: end-to-end QoS and QoE measurements. Comput Netw 52(3):650–666

    Article  Google Scholar 

  8. Guha S, Daswani N, Jain R (2006) An experimental study of the Skype peer-to-peer VoIP System. In: Proceedings of the 5th international workshop on peer-to-peer systems (IPTPS ‘06)

  9. Feamster N, Andersen D, Balakrishnan H, Kaashoek F (2003) Measuring the effects of Internet path faults on reactive routing. In: Proceedings of the 2003 ACM SIGMETRICS international conference on measurement and modeling of computer systems

  10. ITU-T, Recommendation P. 862

  11. ITU-T, Recommendation G. 107

  12. Levy H, Zlatokrilov H (2006) The effect of packet dispersion on voice applications in IP networks. IEEE Trans Netw 14(2):277–288

    Article  Google Scholar 

  13. Francis-Cobley PP, Coward AD (2004) Voice over IP versus voice over frame relay. Int J Netw Manag 14(4):223–230

    Article  Google Scholar 

  14. Belson K (2006) Clear as a bell one day, fuzzy and garbled the next, the New York Times, http://www.nytimes.com/2006/09/27/technology/circuits/27fuzz.html. Accessed 8 August 2009

  15. Reardon M (2009) Skype targets businesses with new service, CNET News, http://news.cnet.com/8301-1001_3-10201830-92.html. Accessed 8 August 2009

  16. Edwards J (2008) Skype Vs. business VoIP: how they stack up, VoIP News, http://www.voip-news.com/feature/skype-vs-business-voip-022708/. Accessed 8 August 2009

  17. Caizzone G, Corghi A, Giacomazzi P, Nonnoi M (2008) Analysis of the scalability of the overlay Skype system. In: Proceedings of ICC’08

  18. Xie H, Yang YR (2007) A measurement based study of the Skype peer-to-peer VoIP performance. In: Proceedings of the 6th international workshop on peer-to-peer systems (IPTPS ‘07)

  19. Kuraya K, Masuyama H, Kasahara S, Takahashi Y (2008) Performance analysis of decentralized user information management system for peer-to-peer real-time communication services. In: Proceedings of the 6th international symposium on communication systems, network and digital signal processing (CSNDSP08)

  20. Segan S, Griffith E (2008) The best (and worst) tech support in America: VoIP, PC Mag., http://www.pcmag.com/article2/0,2817,2326609,00.asp. Accessed 8 August 2009

  21. Gao L, Junzhou L (2006) Performance analysis of a P2P-based VoIP software. In: Proceedings of the advanced international conference on telecommunications and international conference on internet and web applications and services

  22. Paul R (2006) More universities banning Skype, Ars Technica, http://arstechnica.com/news.ars/post/20060924-7814.html. Accessed 8 August 2009

  23. Skype usage at Fermilab, http://netweb.fnal.gov/skype/skype.htm. Accessed 8 August 2009

  24. Broida R (2007) VoIP services: who are you calling cheap? PC Mag., http://www.pcmag.com/article2/0,2817,2222935,00.asp. Accessed 8 August 2009

  25. Li C, Yu B, Sycara K (2009) An incentive mechanism for message relaying in unstructured peer-to-peer systems, Electron Commer Res Appl. doi:10.1016/j.elerap.2009.04.007

  26. Blanc A, Liu Y-K, Vahdat A (2005) Designing Incentives for peer-to-peer routing. In Proceedings of 24th annual joint conference of the IEEE computer and communications societies

  27. Darlagiannis V, Mauthe A, Steinmetz R (2004) Overlay design mechanisms for heterogeneous, large-scale, dynamic P2P systems. J Netw Syst Manag 12(3):371–395

    Article  Google Scholar 

  28. Dai X, Chaudhary K, GrundyJ (2007) Comparing and contrasting micro-payment models for content sharing in P2P networks. In: Proceedings of signal-image technologies and internet-based system

  29. Bit-torrent, http://www.bittorrent.com/. Accessed 8 August 2009

  30. Park JS, Lim BH, LeBlanc LJ (2007) Design of reliable SONET feeder networks. Inf Technol Manag 8(1):19–29

    Article  Google Scholar 

  31. Du AY, Geng X, Gopal RD, Ramesh R, Whinston AB (2008) Topographically discounted internet infrastructure resources: a panel study and econometric analysis. Inf Technol Manag 9(2):135–146

    Article  Google Scholar 

  32. Cheng HK, Dogan K, Elnicki RA (2006) Pricing and capacity decisions for non-profit internet service providers. Inf Technol Manag 7(2):91–107

    Article  Google Scholar 

  33. Peterson LL, Davie BS (2003) Computer networks: a systems approach, 3rd edn. Morgan Kauffman, San Mateo, CA

    Google Scholar 

  34. Feldman M, Chuang J, Stoica I, Shenker S (2007) Hidden-action in network routing. IEEE J Sel Areas Commun 25(6):1161–1172

    Article  Google Scholar 

  35. Andersen DG, Balakrishnan H, Kaashoek MF, Morris R (2001) Resilient overlay networks. In: 18th ACM symposium on operating systems principles (SOSP)

  36. Zhu D, Gritter M, Cheriton D (2002) Feedback based routing. In: Proceedings of HotNets-I

  37. Lakshminarayanan K, StoicaI, Shenker S (2004) Routing as a service. In: UCB Technical Report (No. UCB/ CSD-04-1327)

  38. Shakkottai S, Srikant R (2006) Economics of network pricing with multiple ISPs. IEEE Trans Netw 14(6):1233–1245

    Article  Google Scholar 

  39. Machado R, Tekinay S (2008) A survey of game-theoretic approaches in wireless sensor networks. Comput Netw 52(16):3047–3061

    Article  Google Scholar 

  40. Ma RTB, Lee SCM, Lui JCS, Yau DKY (2006) Incentive and service differentiation in P2P networks: a game theoretic approach. IEEE Trans Netw 14(5):978–991

    Article  Google Scholar 

  41. Grossklags J, Christin N, Chuang J (2008) Secure or insure? A game-theoretic analysis of information security games. In: Proceeding of the 17th international conference on World Wide Web

  42. Gibbons R (1992) Game theory for applied economists. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Ming Li.

Appendix

Appendix

1.1 Proposition 1

Proof

We first assume all exert high-effort except the supernode \( i \). For simplicity, we define \( R_{H} \) and \( R_{L} \) as follows.

$$ \begin{aligned} R_{H} \equiv & \Pr \left( {\left. {x^{G} } \right|\forall j,a_{j} = 1} \right)s_{i}^{G} + \left( {1 - \Pr \left( {\left. {x^{G} } \right|\forall j,a_{j} = 1} \right)} \right)s_{i}^{B} - c_{i} \\ R_{L} \equiv & \Pr \left( {\left. {x^{G} } \right|\forall j \ne i,a_{j} = 1,a_{i} = 0} \right)s_{i}^{G} + \left( {1 - \Pr \left( {\left. {x^{G} } \right|\forall j \ne i,a_{j} = 1,a_{i} = 0} \right)} \right)s_{i}^{B} + w_{i} \\ \end{aligned} $$

Obviously, when \( R_{H} \ge R_{L} \) and \( R_{H} \ge w_{i} \) hold, we have the cooperating Nash equilibrium. Moreover, because \( q(n)s_{i}^{G} + (1 - q(n))s_{i}^{B} \) is the expected payment by the platform provider, solving \( R_{H} = w_{i} \) yields the optimal contract.

Lemma 1

When all supernodes exert high-effort in each period (that is, the cooperation strategy), the expected value of each supernode i’s payoff is given by \( \Uppi_{i,t = 0}^{c} = {\frac{{\rho_{i} - c_{i} - \delta (1 - q(n))F_{i} }}{1 - \delta }} \) . Moreover, if the supernode \( i \) adopts the fraud strategy, its expected payoff is given by \( \Uppi_{i,t = 0}^{s} = {\frac{{\rho_{i} + w_{i} - \delta (1 - \hat{q}(n))F_{i} }}{1 - \delta }} \) .

Proof

Because the liability resulting from bad communication quality at the current period is paid in the next period, the expected value of each supernode’s payoff is: \( \Uppi_{i,t = 0}^{c} = (\rho_{i} - c_{i} ) + \delta \left( {\Uppi_{i,t = 0}^{c} - (1 - q(n))F_{i} } \right) = {\frac{{\rho_{i} - c_{i} - \delta (1 - q(n))F_{i} }}{1 - \delta }} \).

If the supernode \( i \) adopting the fraud strategy is willing to pay the liability, its payoff is given by\( \Uppi_{i,t = 0}^{s} = (\rho_{i} + w_{i} ) + \delta \left( {\Uppi_{i,t = 0}^{s} - (1 - \hat{q}(n))F_{i} } \right) = {\frac{{\rho_{i} + w_{i} - \delta (1 - \hat{q}(n))F_{i} }}{1 - \delta }} \).

Lemma 2

When all supernodes adopt the cooperation strategy, the platform provider’s expected payment to the supernode \( i \) in the ex ante reward mechanism is given by \( {\frac{{\rho_{i} - \delta (1 - q(n))F_{i} }}{1 - \delta }} \) .

Proof

In the ex ante reward mechanism, the platform provider has to pay the reward \( \rho_{i} \) to the supernode \( i \) in each period. In addition, it may receive the liability from the supernode \( i \) with the probability \( \Pr \left( {\left. {x^{B} } \right|\forall j,a_{j} = 1} \right) \). Therefore, its expected payment to the supernode \( i \) is given by\( \rho_{i} + \sum\limits_{t = 1}^{\infty } {\delta^{t} \left( {\rho_{i} - \Pr \left( {\left. {x^{B} } \right|\forall j,a_{j} = 1} \right)F_{i} } \right)} = {\frac{{\rho_{i} - \Pr \left( {\left. {x^{B} } \right|\forall j,a_{j} = 1} \right)\delta F_{i} }}{1 - \delta }} \).

Lemma 3

When \( \rho_{i} \ge (c_{i} + w_{i} ) + (1 - \delta q(n))F_{i} \) holds, the supernode \( i \) adopting the cooperation strategy is willing to pay the liability.

Proof

If the supernode i rejects the contract, its reserved payoff is given by \( {{w_{i} } \mathord{\left/ {\vphantom {{w_{i} } {(1 - \delta )}}} \right. \kern-\nulldelimiterspace} {(1 - \delta )}} \). Therefore, if \( \Uppi_{i,t = 0}^{c} - F_{i} \ge {{w_{i} } \mathord{\left/ {\vphantom {{w_{i} } {(1 - \delta )}}} \right. \kern-\nulldelimiterspace} {(1 - \delta )}} \) holds, the supernode adopting the cooperation strategy is willing to pay the liability in all periods. That is,

$$ \Uppi_{i,t = 0}^{c} - F_{i} \ge {{w_{i} } \mathord{\left/ {\vphantom {{w_{i} } {(1 - \delta )}}} \right. \kern-\nulldelimiterspace} {(1 - \delta )}} \Rightarrow \Uppi_{i,t}^{c} \ge {{w_{i} } \mathord{\left/ {\vphantom {{w_{i} } {(1 - \delta )}}} \right. \kern-\nulldelimiterspace} {(1 - \delta )}},\quad \forall t \Rightarrow \rho_{i} \ge (c_{i} + w_{i} ) + (1 - \delta q(n))F_{i} . $$

1.2 Theorem 1

Proof

Theorem 1 is based on lemma 1 and lemma 3. Because of the constraint \( \rho_{i} \ge (c_{i} + w_{i} ) + (1 - \delta q(n))F_{i} \), the supernode adopting the cooperation strategy would pay the liability in the game and any of the subgames. The following inequalities ensure the payoff of the cooperating strategy is better than the fraud strategy.

$$ \begin{aligned} \Uppi_{i,t = 0}^{c} \ge \Uppi_{i,t = 0}^{s} \Rightarrow & \Uppi_{i,t}^{c} \ge \Uppi_{i,t}^{s} ,\forall t \Rightarrow {\frac{{\rho_{i} - c_{i} - \delta (1 - q(n))F_{i} }}{1 - \delta }} \ge {\frac{{\rho_{i} + w_{i} - \delta (1 - \hat{q}(n))F_{i} }}{1 - \delta }} \\ \Rightarrow & F_{i} \ge {\frac{{c_{i} + w_{i} }}{{\delta (q(n) - \hat{q}(n))}}} \\ \end{aligned} $$
(A.1)

1.3 Corollary 1

Proof

The relation between \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{F}_{\;i} \) and \( F_{i} \) is derived from Eq. A.1 in the proof of Theorem 1, whereas the relation between \( \bar{F}_{i} \) and \( F_{i} \) is derived from Lemma 3.

1.4 Corollary 2

Proof

To begin with, we can easily derive \( \rho_{i}^{\min } \) and \( F_{i}^{\min } \) from Theorem 1. Obviously, \( \rho_{i}^{\min } < F_{i}^{\min } \). Moreover, the platform provider’s expected payment in Lemma 2 implies that \( \rho_{i}^{\min } \) and \( F_{i}^{\min } \) are the optimal solution for the platform provider. The reason is as follows. First, from Eq. A.1 we know that the value of \( F_{i} \) cannot be affected by \( \rho_{i} \); thus, we only consider \( \rho_{i}^{\min } \). Second, plugging \( \rho_{i}^{\min } \) into the platform provider’s expected payment, we find that the platform provider’s expected payment is given by

$$ {\frac{{\rho_{i}^{\min } - (1 - q(n))\delta F_{i} }}{1 - \delta }} = {\frac{{(c_{i} + w_{i} ) + (1 - \delta )F_{i} }}{1 - \delta }}. $$

Obviously, \( \rho_{i}^{\min } \) and \( F_{i}^{\min } \) are the optimal solution for the platform provider. Finally, comparing \( \rho_{i}^{\min } \) with \( s_{i}^{G} \), we have the following result.

$$ \rho_{i}^{\min } \le s_{i}^{G} \Rightarrow {\frac{{(1 - \delta \hat{q}(n))(c_{i} + w_{i} )}}{{\delta (q(n) - \hat{q}(n))}}} \le {\frac{{c_{i} + w_{i} }}{{q(n) - \hat{q}(n)}}} \Rightarrow {{(1 - \delta )} \mathord{\left/ {\vphantom {{(1 - \delta )} \delta }} \right. \kern-\nulldelimiterspace} \delta } \le \hat{q}\left( n \right) $$

1.5 Proposition 2

Proof

Because \( {{\partial^{2} P_{4} } \mathord{\left/ {\vphantom {{\partial^{2} P_{4} } {\partial \delta^{2} }}} \right. \kern-\nulldelimiterspace} {\partial \delta^{2} }} > 0 \), we can figure out the minimal value of \( P_{4} \) by solving \( {{\partial P_{4} } \mathord{\left/ {\vphantom {{\partial P_{4} } {\partial \delta }}} \right. \kern-\nulldelimiterspace} {\partial \delta }} = 0 \). Because \( {{\partial P_{4} } \mathord{\left/ {\vphantom {{\partial P_{4} } {\partial \delta }}} \right. \kern-\nulldelimiterspace} {\partial \delta }} = 0 \) implies \( {\frac{1}{{(1 - \delta )^{2} }}} - {\frac{1}{{\delta^{2} (1 - \alpha )q(n)}}} = 0 \), we can define \( J(\delta ) \) by \( \delta^{2} (1 - \alpha )q(n) - (1 - \delta )^{2} \)

1.6 Proposition 3

Proof

The equation \( {{\partial P_{4} } \mathord{\left/ {\vphantom {{\partial P_{4} } {\partial n}}} \right. \kern-\nulldelimiterspace} {\partial n}} = 0 \) implies \( q(n) - nq^{\prime}(n) \le 0 \). If \( {{\partial P_{4} } \mathord{\left/ {\vphantom {{\partial P_{4} } {\partial n}}} \right. \kern-\nulldelimiterspace} {\partial n}} = 0 \) holds for some \( n \), we have \( {{\partial^{2} P_{4} } \mathord{\left/ {\vphantom {{\partial^{2} P_{4} } {\partial n^{2} }}} \right. \kern-\nulldelimiterspace} {\partial n^{2} }} > 0 \) due to \( q(n) - nq^{\prime}(n) \le 0 \).

1.7 Proposition 4

Proof

We can confirm \( {{\lambda_{0} q\left( {n_{2}^{ * } } \right)} \mathord{\left/ {\vphantom {{\lambda_{0} q\left( {n_{2}^{ * } } \right)} n}} \right. \kern-\nulldelimiterspace} n} > c + w \). Otherwise, the platform provider’s expected payoff wouldn’t be positive (i.e., \( \pi_{4} < 0 \)). Subsequently, we claim \( q\left( {n_{2}^{ * } } \right) - nq^{\prime}\left( {n_{2}^{ * } } \right) > 0 \). Suppose not, we can induce a contrary conclusion by the following inequalities.

$$ \begin{gathered} \because\,\lambda_{0} q^{\prime}\left( {n_{2}^{ * } } \right) - {\frac{(c + w)(1 - \delta )}{\delta (1 - \alpha )}} \cdot {\frac{{q\left( {n_{2}^{ * } } \right) - nq^{\prime}\left( {n_{2}^{ * } } \right)}}{{q\left( {n_{2}^{ * } } \right)^{2} }}} - (c + w) = 0 \hfill \\ \therefore\,\lambda_{0} q^{\prime}\left( {n_{2}^{ * } } \right) - (c + w) < 0 \Rightarrow {{\lambda_{0} q\left( {n_{2}^{ * } } \right)} \mathord{\left/ {\vphantom {{\lambda_{0} q\left( {n_{2}^{ * } } \right)} n}} \right. \kern-\nulldelimiterspace} n} < c + w \hfill \\ \end{gathered} $$

Based on the above result, we can straightforwardly observe the impact of the system parameters on the platform provider’s expected payoff.

1.8 Proposition 5

Proof

First, \( \left. {{\frac{{\partial \pi_{4} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} = 0 \) implies \( {\frac{{\lambda_{0} q^{\prime}\left( {n_{2}^{ * } } \right)}}{c + w}} = {\frac{(1 - \delta )}{\delta (1 - \alpha )}} \cdot {\frac{{q\left( {n_{2}^{ * } } \right) - nq^{\prime}\left( {n_{2}^{ * } } \right)}}{{q\left( {n_{2}^{ * } } \right)^{2} }}} + 1 \). Considering \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} \), we find that the sign of \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} \) is the same as that of \( {\frac{{q\left( {n_{2}^{ * } } \right) - nq^{\prime}\left( {n_{2}^{ * } } \right)}}{{q\left( {n_{2}^{ * } } \right)^{2} }}} - {\frac{\alpha \delta }{(1 - \delta )}} \). Because \( q\left( {n_{2}^{ * } } \right) - nq^{\prime}\left( {n_{2}^{ * } } \right) > 0 \) has been shown in Proposition 4, we can easily confirm \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} > 0 \) when \( \delta \) approaches zero and \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} < 0 \) when \( \delta \) approaches one. Because \( \pi_{3} \) is a concave function of \( n \), we have \( n_{1}^{ * } > n_{2}^{ * } \) if \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} > 0 \) and \( n_{1}^{ * } < n_{2}^{ * } \) if \( \left. {{\frac{{\partial \pi_{3} }}{\partial n}}} \right|_{{n = n_{2}^{ * } }} < 0 \).

1.9 Proposition 6

Proof

We define \( \phi (t) \) by \( \phi (t) \equiv \sum\nolimits_{i = t}^{\infty } {\prod\nolimits_{j = t}^{i} {\delta (j)} } \) where \( t \ge 1 \). In period \( t - 1 \), the difference between the expected payoffs results from the cooperation strategy and the fraud strategy is given by \( \Uppi_{i}^{c} - \Uppi_{i}^{s} = \phi (t)((q(n) - \hat{q}(n))F_{i} - (c_{i} + w_{i} )) - (c_{i} + w_{i} ) \). Obviously, the difference decreases with \( t \). That is, the incentive for supernodes to cheat increases with time.

1.10 Proposition 7

Proof

Because we have shown the case in which each supernode exerts high effort in the two reward mechanisms, in the following, we only consider partial cooperation and the case in which each supernode exerts low effort. In the ex post reward mechanism, we define the expected payoffs of exerting high effort and low effort by \( R^{c} (n,k) \) and \( R^{s} (n,k) \), given \( k \) supernodes exerting high effort. The condition in which there are k supernodes exerting high effort is:

$$ \begin{aligned} R^{c} (n,k) \ge R^{s} (n,k - 1) \Rightarrow & s_{i}^{G} \ge {\frac{{c_{i} + w_{i} }}{q(n,k) - q(n,k - 1)}} \\ R^{s} (n,k) \ge R^{c} (n,k + 1) \Rightarrow & {\frac{{c_{i} + w_{i} }}{q(n,k + 1) - q(n,k)}} \ge s_{i}^{G} \\ \end{aligned} $$

The condition in which each supernode exerts low effort is given by

$$ R^{s} (n,0) \ge R^{c} (n,1) \Rightarrow {\frac{{c_{i} + w_{i} }}{q(n,1) - q(n,0)}} \ge s_{i}^{G} $$

In the ex ante reward mechanism, we define the expected payoffs of exerting high effort and low effort by \( \Uppi_{i}^{c} (n,k) \) and \( \Uppi_{i}^{s} (n,k) \), given \( k \) supernodes exerting high effort. The condition in which there are k supernodes exerting high effort is:

$$ \Uppi_{i}^{c} (n,k) \ge \Uppi_{i}^{s} (n,k - 1) \Rightarrow F_{i} \ge {\frac{{c_{i} + w_{i} }}{\delta (q(n,k) - q(n,k - 1))}} $$
$$ \Uppi_{i}^{s} (n,k) \ge \Uppi_{i}^{c} (n,k + 1) \Rightarrow {\frac{{c_{i} + w_{i} }}{\delta (q(n,k + 1) - q(n,k))}} \ge F_{i} $$
$$ \Uppi_{i}^{c} (n,k) - F_{i} \ge {\frac{{w_{i} }}{1 - \delta }} \Rightarrow \rho_{i} \ge (c_{i} + w_{i} ) + (1 - \delta q(n,k))F_{i} $$
$$ \Uppi_{i}^{s} (n,k) - F_{i} \ge {\frac{{w_{i} }}{1 - \delta }} \Rightarrow \rho_{i} \ge (1 - \delta q(n,k))F_{i} $$

Obviously, regarding the bound of \( \rho_{i} \), we only need \( \rho_{i} \ge (c_{i} + w_{i} ) + (1 - \delta q(n,k))F_{i} \). Moreover, the condition in which each supernode exerts low effort is given by

$$ \Uppi_{i}^{s} (n,0) \ge \Uppi_{i}^{c} (n,1) \Rightarrow {\frac{{c_{i} + w_{i} }}{\delta (q(n,1) - q(n,0))}} \ge F_{i} $$
$$ \Uppi_{i}^{s} - F_{i} \ge {\frac{{w_{i} }}{1 - \delta }} \Rightarrow \rho_{i} \ge (1 - \delta q(n,0))F_{i} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YM., Jhang-Li, JH. & Cheng, DY. Reward mechanisms for P2P VoIP networks. Inf Technol Manag 11, 91–105 (2010). https://doi.org/10.1007/s10799-010-0070-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-010-0070-5

Keywords

Navigation