Skip to main content

Advertisement

Log in

Pupils’ readiness for self-regulated learning in the forethought phase of Exploratory Production

  • Published:
International Journal of Technology and Design Education Aims and scope Submit manuscript

Abstract

This article discusses pupils’ readiness for self-regulation in Exploratory Production in Technology Education. In the forethought phase of Exploratory Production, pupils envision and regulate their technological production activities. Next, in the performance phase, the envisioned goals are tried and implemented through ideating, planning and manufacturing. Finally, in the self-regulation phase, the goals are tested with new products in their usage targets. The theoretical framework of self-regulated learning and empirical categorization of the data are based on Zimmerman’s model (Self-regulated learning from teaching to self-reflective practice. The Guilford Press, New York, pp 1–19, 1998, Handbook of self-regulation of learning and performance. Routledge, London, pp 49–64, 2011). The focus of this article is on the forethought phase. The empirical analysis in this article is based on national evaluation data of Finnish compulsory education. The first national evaluation of learning outcomes in Technology Education (taught within the subject Craft) was implemented by the Finnish National Board of Education in spring 2010. The evaluation was carried out as two questionnaires for ninth graders with general (n = 4,792) and advanced (n = 1,548) questions, and a production exercise (n = 661). In this article, the data is analyzed further based on learners’ comprehensions, leisure-time activities and classroom techniques. The article is part of a larger research project that aims to improve the national evaluation data. The results on pupils’ readiness for self-regulation in the forethought phase of Exploratory Production are encouraging. Pupils’ have positive comprehensions of the Craft & Technology (C & T) subject and they find learning useful for their current life and for the future. Learning tasks and producing tasks in the C & T subject could be even more related to pupils’ own technological and functional experiences. More effort should be given to support pupils’ readiness to regulate goals for their own technological production activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Autio, O., Hietanoro, J., & Ruismäki, H. (2011). Taking part in technology education: Elements in students’ motivation. International Journal of Technology and Design Education, 21, 349–361.

    Article  Google Scholar 

  • Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice Hall Publishers.

    Google Scholar 

  • Barak, M. (2009a). Motivating self-regulated learning in technology education. International Journal of Technology and Design Education, 20(4), 381–401.

    Article  Google Scholar 

  • Barak, M. (2009b). Fostering self-regulated learning in technological projects. In Conference proceeding, PATT—22, strengthening technology education in the school curriculum—delft, the Netherlands. August 24–28, 2009. Accessed Jan 20, 2014 from http://www.iteaconnect.org/Conference/PATT/PATT22/Barak.pdf.

  • Barak, M. (2011). Fostering learning in the engineering and technology class. From content-oriented instruction toward a focus on cognition, meta-cognition and motivation. In M. Barak & M. Hacker (Eds.), Fostering human development through engineering and technology education (pp. 35–54). Rotterdam: International Technology Education Series, Sense Publishers.

    Chapter  Google Scholar 

  • Beishuizen, J., & Steffens, K. (2011). A conceptual framework for research on self-regulated learning. In R. Carneiro, P. Lefrere, K. Steffens, & J. Underwood (Eds.), Self-regulated learning in technology enhanced learning environments. A European perspective (pp. 3–20). Rotterdam: SensePublishers.

    Chapter  Google Scholar 

  • Blomdahl, E., & Rogala, W. (2008). Technology in compulsory school: Why? What? How? Design and Technology Education: An International Journal, 13(1), 19–28.

    Google Scholar 

  • Bråten, I. (1991). Vygotsky as a precursor to meta-cognitive theory: II Vygotsky as a Metacognitivist. Scandinavian Journal of Educational Research, 35(4), 305–320.

    Article  Google Scholar 

  • Carneiro, R., Lefrere, R. & Steffens, K. (2007). Self-regulated learning in technology enhanced learning environments: A European review. In Kaleidoscope concepts and methods for exploring the future of learning with digital technologies. Accessed Jan 20, 2014 from http://www.Imi.ub.es/taconet/documents/srlinteles3pdf.

  • Chester, I. (2007). Teaching for CAD expertise. International Journal of Technology and Design Education, 17(1), 23–35.

    Article  Google Scholar 

  • Crawford, M. B. (2009). Shop class as Soulcraft: An inquiry into the value of work. London: The Penguin Press, a member of Penguin Group (USA) Inc.

    Google Scholar 

  • Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.

    Article  Google Scholar 

  • Curran, P., West, S., & Finch, J. (1996). The robustness of test statistics to non-normality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16–29.

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior. Journal of Personality and Social Psychology, 53, 1024–1037.

    Article  Google Scholar 

  • Dewey, J. (2011). Democracy and education. London: Simon & Brown.

  • Finnish National Core Curriculum for Basic Education. (2004). Accessed Jan 20, 2014 from http://www.oph.fi/download/47673_core_curricula_basic_education_4.pdf.

  • Gibson, K. (2008). Technology and technological knowledge: A challenge for school curricula. Teachers and Teaching: theory and practice, 14(1), 3–15.

    Article  Google Scholar 

  • Gliner, J., Morgan, G., & Harmon, R. (2001). Measurement reliability. Journal of the American Academy of Child and Adolescent Psychiatry, 40(4), 486–488.

    Article  Google Scholar 

  • Grow, G. (1991). Teaching learners to be self-directed. A state approach. Adult Education Quarterly, 41(3), 126–130.

    Article  Google Scholar 

  • Hilmola, A. (2011a). Käsityö [Craft]. In: S. Laitinen, A. Hilmola & M.-L. Juntunen (Eds.) Perusopetuksen musiikin, kuvataiteen ja käsityön oppimistulosten arviointi 9. vuosiluokalla. [Evaluation of learning results in compulsory education music, art and craft in 9th grade] (pp. 158–237). Finnish National Board of Education. Training Reports 2011:1.

  • Hilmola, A. (2011b). Kokonainen käsityöprosessi kouluopetuksen kontekstissa. [A complete Sloyd process in school context]. In S. Laitinen & A. Hilmola (Eds.). Taito- ja taideaineiden oppimistulokset: Asiantuntijoiden arviointia. [Learning results in craft: An Expert analysis] (pp. 142–161). Finnish National Board of Education. Reports 2011:11.

  • Hilmola, A. (2011c). Samansisältöisen käsityön osaaminen peruskoulussa. [Skills, Knowledge and understanding of Sloyd contents in compulsory education]. In S. Laitinen & A. Hilmola (eds.). Taito- ja taideaineiden oppimistulokset: Asiantuntijoiden arviointia. [Learning results in Sloyd: An expert analysis] (pp. 162–174). Finnish National Board of Education. Reports 2011:11.

  • Hope, G. (2009). Beyond knowing how to make it work: The conceptual foundations of designing. Design and Technology Education: An International Journal, 14(1), 49–55.

    Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.

    Article  Google Scholar 

  • Kananoja, T. (2009). Technology education in general education in Finland. In A. Jones & M. de Vries (Eds.), International handbook of research and development in technology education (pp. 41–50). Rotterdam: International Technology Education Series. SensePublishers.

    Google Scholar 

  • Kantola, J., Nikkanen, P., Kari, J., & Kananoja, T. (1999). Through education into the world of work, Uno Cygnaeus, the father of technology education. Jyväskylä: Institution for Educational Research. University of Jyväskylä.

    Google Scholar 

  • Kauppinen, J. (2009). Johdanto [Introduction] In A. Aro, M. Hartikainen, M. Hollo, H. Järnefelt, E. Kauppinen, H. Ketonen, M. Manninen, M. Pietilä & P. Sinko (Eds.) Taide- ja taito: kiinni elämässä! [Art and skill: In life!] TaiTai Taide- ja taitokasvatus. [Art and Skill Education] (pp. 5–6). Finnish National Board of Education, 2/2009.

  • Kline, R. (2011). Principles and practice of structural equation modeling (3rd ed.). New York & London: The Guilford Press.

    Google Scholar 

  • Koulutuksen tilastollinen vuosikirja [Educational Statistics]. (2012). Opetushallitus. [Finnish National Board of Education]. Reports 2012:5. Tampere: Juvenes Print—Tampere University Press.

  • Laitinen, S. & Hilmola, A. (Eds.). (2011). Taito- ja taideaineiden oppimistulokset: Asiantuntijoiden arviointia. [learning results in Sloyd: An expert analysis]. Finnish National Board of Education. Reports 2011:11.

  • Laitinen, S., Hilmola A. & Juntunen, M.-L. (Eds.) (2011). Perusopetuksen musiikin, kuvataiteen ja käsityön oppimistulosten arviointi 9. vuosiluokalla. [Evaluation of learning results in compulsory education music, art and craft in 9th grade]. Finnish National Board of Education. Training Reports 2011:1.

  • Lawanto, O., Butler, D., Cartier, S., Santoso, H., Lawanto, K., & Monarch, D. (2013). An exploratory study of self-regulated learning strategies in a design project by students in grades 9–12. Design and Technology Education: An International Journal, 18(1), 44–57.

    Google Scholar 

  • Lepistö, J. (2011). Tyttöjen ja poikien käsityötaito. [Girls’ and Boys’ Sloyd Skills]. In: S. Laitinen & A. Hilmola (Eds.). Taito- ja taideaineiden oppimistulokset: Asiantuntijoiden arviointia. [Learning results in Sloyd: An expert analysis] (pp. 175–193). Finnish National Board of Education. Reports 2011:11.

  • Leppävirta, J., Kettunen, H., & Sihvola, A. (2011). Complex problem exercises in developing engineering students’ conceptual and procedural knowledge of electromagnetics. IEEE Transactions on Education, 54(1), 63–66.

    Article  Google Scholar 

  • Lindfors, L. (1991). Slöjdverksamhetens grunddimensioner vid arbetsinlärning i ett slöjdpedagogist perspectiv. [Basic dimensions of Sloyd education from a pedagogical point of view]. Reports from the Faculty of Education, 33/1991. Vaasa: Åbo Akademi University, Institution for Teacher Training.

  • Lindfors, L. (1999). Sloyd education in the cultural struggle. Part VIII. An outline of a Sloyd educational theory. Åbo Akademi University. Reports from the Faculty of Education, 4/1999.

  • Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When “Good” indicators are bad and “Bad” indicators are good. Psychological Methods, 4(2), 192–211.

    Article  Google Scholar 

  • Lonka, K., & Lindblom-Ylänne, S. (1996). Epistemologies, conceptions of learning, and study practices in medicine and psychology. Higher Education, 31, 5–24.

    Article  Google Scholar 

  • McCormick, R. (2004). Issues of learning and knowledge in technology education. International Journal of Technology and Design Education, 14, 21–44.

    Article  Google Scholar 

  • McCormick, R. (2008). Classroom Case Studies. In H. Middleton (Ed.), Researching technology education. Methods and techniques (pp. 6–27). Rotterdam: SensePublishers.

    Google Scholar 

  • Metsärinne, M. (2002). Comprehensive Sloyd teaching for a producing operation. In Sandven, J (Ed.) Sloyden: idealet om et bra liv? Dokumentasjon fra NordFo-symposium Reykjavik 8–13. November 2001. Techne Series, Research in Sloyd Education and Craft Science B, 11.

  • Metsärinne, M. (2003). Teknisen käsityön visio-opetus ja -oppiminen. Toiminta- ja tapaustutkimus peruskoulun 9. luokalla. [Sloyd vision teaching and learning. case and Action research in 9th Grade]. University of Turku. Annales Universitatis Turkuensis. Sarja—ser. C osa—tom. 198. Doctoral dissertation, University of Turku, Finland.

  • Metsärinne, M. (2004). Projektikäsityöopetus. [Project based Sloyd]. Techne Series, Research in Sloyd Education and Craft Science A, 6, 1–249.

  • Metsärinne, M. (2007). Käsityön oppimisen innovointi. [Innovating Learning of Sloyd]. In: M. Metsärinne & J. Peltonen (Eds.). Katosiko tekninen työ Turun yliopistosta? Käsityön oppimisen innovointi.[Did technical work disappear from the University of Turku? Innovating learning of Sloyd]. Techne Series, Research in Sloyd Education and Craft Science A: 11.

  • Metsärinne, M. (2009a). Teknologisten käsityösysteemien tuottaminen. [Creating Technological Craft Systems in Sloyd Education]. In: Metsärinne, M (Ed.) Käsityökasvatus tieteenalana 20v: Sloyd education 20 years as a discipline. Techne Series, Research in Sloyd Education and Craft Science A, 15: 131–156.

  • Metsärinne, M. (2009b). Technology in the Sloyd/Technology Education. In: Development of Universities in the context of internationalization of higher education (pp. 143–153). Conference Publication. The Baltic Sea Region University Network.

  • Metsärinne, M. (2011). Käsityön prosessioppimisen tarkastelua koulukäsityön perus- ja otosmittariarvioinnin perusteella. [Examining Process Learning of technology by Basic and Sample Evaluation]. In S. Laitinen & A. Hilmola (Eds.) Taito- ja taideaineiden oppimistulokset: asiantuntijoiden arviointia. [Learning results in Craft: An expert analysis]. Finnish National Board of Education. Reports 2011:11, pp 194–206.

  • Metsärinne, M. & Kallio, M. (2011a). Johdatus tutkivaan tuottamiseen: Introduction to research-based production. Techne Series, Research in Sloyd Education and Craft Science B, 16, 1–102.

  • Metsärinne, M. & Kallio, M. (2011b). Defining craft quality theory framework in Sloyd education. In M. Johansson & M. Porko-Hudd (Eds.). Vetenskapliga perspektiv och metoder inom slöjdfältet. [Scientific Perspective and Methods for Sloyd]. Techne Series: Research in Sloyd Education and Craft Science A, 18(1).

  • Metsärinne, M. & Kallio, M. (2014). Craft interests during leisure time and craft learning outcomes in Finland. Craft Research, 5, 35-53.

  • Metsärinne, M., Kullas, S., Kallio, M., & Pirttimaa, M. (2010). Teacher students’ individual growth into the Craftsteachership. In A. Rasinen & T. Rissanen (Eds.), In the spirit of Uno Cygnaeus: Pedagogical questions of today and tomorrow (pp. 223–240). Jyväskylä: University of Jyväskylä, Department of Teacher Education.

    Google Scholar 

  • Metsärinne, M., & Virta, K. (2012). The development of Sloyd teacher students self-directed learning readiness. Techne Series: Research in Sloyd Education and Craft Science A, 19(1), 41–53.

    Google Scholar 

  • Morgan, G., Gliner, J., & Harmon, R. (2001). Measurement validity. Journal of the American Academy of Child and Adolescent Psychiatry, 40(6), 729–731.

    Article  Google Scholar 

  • Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.

    Article  Google Scholar 

  • Norström (2014). How technology teachers understand technological knowledge. International Journal of Technology and Design Education, 24, 19–38.

  • Peltonen, J. (1988). Käsityökasvatuksen perusteet. Koulukäsityön ja sen opetuksen teoria sekä teoreettinen ja empiirinen tutkimus peruskoulun yläasteen teknisen työn oppisisällöistä ja opetuksesta. [Grounds of Sloyd education. Theory of school Sloyd and a theoretical and empirical study of secondary school technical work contents and teaching]. University of Turku. Faculty of Education. Publications A:132.

  • Peltonen, J. (2003a). The chain of rational theories as the directing means of productive activities in Academic Sloyd Education. In: K. Virta (ed.) Current research on Sloyd education. Techne Series, Research in Sloyd Education and Craft Science A, 5:78–96.

  • Peltonen, J. (2003b). Handicraft education and truth. Considerations of truth as a basis for research-oriented teaching in handicraft education. In M. Itkonen & G. Backhaus (Eds.), Lived images. Life-world and I-hood (pp. 412–429). Mediations in Experience: University of Jyväskylä. Department of Teacher Education.

    Google Scholar 

  • Peltonen, J. (2007). Katosiko tekninen työ Turun yliopistosta? Tiede pieni, koulutuspolitiikka suuri. Has the technical work disappeared from the University of Turku. In M. Metsärinne & J. Peltonen (Eds.) Katosiko tekninen työ Turun yliopistosta? & Käsityön oppimisen innovointi. Käsityön oppimisen innovointi.[Did technical work disappear from the University of Turku?: Innovating learning of Sloyd]. Techne Series, Research in Sloyd Education and Craft Science A, 11, pp. 17–80.

  • Pintrick, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and application (2nd ed.). Upper Saddle River, NJ: Merrill Prentice Hall.

    Google Scholar 

  • Pöllänen, S. (2009). Contextualising craft: Peadgogical models for craft education. International Journal of Art & Design Education, 28(3), 249–260.

    Article  Google Scholar 

  • Pöllänen, S. & Kröger, T. (2005). Näkökulmia kokonaiseen käsityöhön. [Views on Holistic Sloyd]. In: P. Seitamaa-Hakkarainen, S. Pöllänen, M. Luutonen, M. Kaipainen, T. Kröger, A.-M. Raunio, O. Sipilä, V. Turunen, L. Vartiainen & A. Heinonen (Eds.). Käsityötieteen ja käsityömuotoilun sekä teknologiakasvatuksen tutkimusohjelma Savonlinnan opettajankoulutuslaitoksessa. [Study Project on Sloyd Education, Design and Technology at the Department of Teacher Education in Savonlinna]. University of Joensuu. Faculty of Education Studies, 100, pp. 160–172.

  • Rasinen, A., Ikonen, P., & Rissanen, T. (2011). Technology education in Finnish comprehensive schools. In C. Benson & J. Lunt (Eds.), Reviewing the past twenty years (pp. 97–105). Rotterdam: International Technology Education Series. SensePublishers.

    Google Scholar 

  • Ryle, G. (1949). The concept of mind. London: Huchinson.

    Google Scholar 

  • Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47(6), 1525–1538.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1987). What’s all the fuss about meta-cognitive? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education. NJ: LEA.

    Google Scholar 

  • Schraw, G. (2006). Knowledge: Structures and processes. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Spendlove, D. (2007). The locating of emotion within a creative, learning and product oriented design and technology experience: Person, process, product. International Journal of Technology and Design Education, 18, 45–57.

    Article  Google Scholar 

  • Stefanou, C. R., Perencevich, K. C., DiCintio, M., & Turner, J. C. (2004). Supporting autonomy in the classroom: Ways teachers encourage student decision making and ownership. Educational Psychologist, 39(2), 97–110.

    Article  Google Scholar 

  • Syrjäläinen E (2010). Käsityön tuottamistehtävän suunnittelun ja valmistuksen laadullinen analyysi. [A Qualitative Analysis of Planning and Producing in the Sloyd Production Exercise]. In: S. Laitinen & A. Hilmola (eds.). Taito- ja taideaineiden oppimistulokset: Asiantuntijoiden arviointia. [Learning results in Sloyd: An expert analysis]. Finnish National Board of Education. Reports 2011:11, pp. 207–224.

  • Vermunt, J. D., & Verloop, N. (1999). Congruence and friction between learning and teaching. Learning and Instruction, 9, 257–264.

    Article  Google Scholar 

  • Virta, K. (2005). Kindergarten, Sloyd and classroom teacher trainees’ self-directed learning, meta-cognitive regulation and web-based support. Annales Universitatis Turkuensis B 286. (Doctoral dissertation, University of Turku, Finland).

  • Virta, K., Metsärinne, M., & Kallio, M. (2013). Supporting craft sense in early education. Techne Series, Research in Sloyd Education and Craft Science A, 20(3), 50–61.

    Google Scholar 

  • Volet, S. & Vauras, M. (Eds.) (2013). Interpersonal regulation of learning and motivation. Methodological advances. New perspectives on learning and instruction. Early. Routledge. London and New York: Taylor & Francis Group.

  • Wagner, E. D., & McCombs, B. L. (1995). Learner-centered psychological principles in practice: Designs for distance education. Educational Technology, 35(3), 32–35.

    Google Scholar 

  • West, S., Taylor, A., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. Hoyle (Ed.), Handbook of structural equation modeling (pp. 209–231). New York: The Guilford Press.

    Google Scholar 

  • Wigfield, A., Klauda, S. L., & Cambria, J. (2011). Influences of the development of academic self-regulatory processes. In B. J. Zimmermann & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 33–48). London: Routledge.

    Google Scholar 

  • Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulated learning from teaching to self-reflective practice (pp. 1–19). New: The Guilford Press.

    Google Scholar 

  • Zimmerman, B. J. (2000). Attaining self-regulation: A socio-cognitive perspective. In M. Boekaerts, P. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 13–39). New York: Academic Press.

    Chapter  Google Scholar 

  • Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). London: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Metsärinne.

Appendices

Appendix 1

See Table 4.

Table 4 Statistics and reliability for comprehensions questionnaire of the FNBE evaluation

Appendix 2

See Table 5.

Table 5 Statistics and reliability for activities mentioned in the FNBE evaluation; A46, A47 and A48 were maintenance and repair related and A53, A55, A56 production related (Metsärinne and Kallio 2014)

Appendix 3

See Table 6.

Table 6 Statistics and reliability for classroom techniques questionnaire in the FNBE evaluation

Appendix 4

See Fig. 7.

Fig. 7
figure 7

The assumed standard model of how learning by modelling and sketching are related to learning by implementation. χ2(df) = 18.73(6), p = .005, TLI = .97, CFI = .99 and RMSEA = .04 (Metsärinne (2011))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metsärinne, M., Kallio, M. & Virta, K. Pupils’ readiness for self-regulated learning in the forethought phase of Exploratory Production. Int J Technol Des Educ 25, 85–108 (2015). https://doi.org/10.1007/s10798-014-9273-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10798-014-9273-0

Keywords

Navigation