Abdel-Basset, M., Chang, V., & Mohamed, R. (2020). HSMA_WOA: A Hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Applied Soft Computing, 95, 106642. https://doi.org/10.1016/j.asoc.2020.106642.
Article
Google Scholar
Abdel-Basset, M., Chang, V., Hawash, H., Chakrabortty, R.K., & Ryan, M. (2021a). FSS-2019-nCov: A Deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection. Knowledge-Based Systems, 212, 106647. https://doi.org/10.1016/j.knosys.2020.106647.
Article
Google Scholar
Abdel-Basset, M., Chang, V., & Nabeeh, N.A. (2021b). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. https://doi.org/10.1016/j.techfore.2020.120431.
Article
Google Scholar
Ahmed, N., Michelin, R.A., Xue, W., Ruj, S., Malaney, R., Kanhere, S.S., Seneviratne, A., Hu, W., Janicke, H., & Jha, S.K. (2020). A survey of COVID-19 contact tracing Apps. IEEE Access, 8, 134577–134601. https://doi.org/10.1109/ACCESS.2020.3010226.
Article
Google Scholar
Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., & Cheng, X. (2020). Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 52(4), 200–202. https://doi.org/10.1152/physiolgenomics.00029.2020.
Article
Google Scholar
Alrumayh, A.S., & Tan, C.C. (2020). Supporting home quarantine with smart speakers. In Proceedings of Deep Learning for Wellbeing Applications Leveraging Mobile Devices and Edge Computing, Association for Computing Machinery, HealthDL’20. https://doi.org/10.1145/3396868.3400897 (pp. 3–8). New York.
Balakreshnan, B., Richards, G., Nanda, G., Mao, H., Athinarayanan, R., & Zaccaria, J. (2020). PPE Compliance Detection Using Artificial Intelligence in Learning Factories. Procedia Manufacturing, 45, 277–282. https://doi.org/10.1016/j.promfg.2020.04.017.
Article
Google Scholar
Banerjee, A., Ray, S., Vorselaars, B., Kitson, J., Mamalakis, M., Weeks, S., Baker, M., & Mackenzie, L.S. (2020). Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. International Immunopharmacology, 86, 106705. https://doi.org/10.1016/j.intimp.2020.106705.
Article
Google Scholar
Barabas, J., Zalman, R., & Kochlan, M. (2020). Automated evaluation of COVID-19 risk factors coupled with real-time, indoor, personal localization data for potential disease identification, prevention and smart quarantining. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). https://doi.org/10.1109/TSP49548.2020.9163461 (pp. 645–648).
Beck, B.R., Shin, B., Choi, Y., Park, S., & Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784–790. https://doi.org/10.1016/j.csbj.2020.03.025.
Article
Google Scholar
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., & Wolf, R. (2020). Training deep quantum neural networks. Nature Communications, 11(1), 808. https://doi.org/10.1038/s41467-020-14454-2.
Article
Google Scholar
Bogner, P., Capua, I., Lipman, D.J., & Cox, N.J. (2006). A global initiative on sharing avian flu data. Nature, 442(7106), 981–981. https://doi.org/10.1038/442981a.
Article
Google Scholar
Bowles, J. (2020). How canadian ai start-up bluedot spotted coronavirus before anyone else had a clue.
Brat, G.A., Weber, G.M., Gehlenborg, N., Avillach, P., Palmer, N.P., Chiovato, L., Cimino, J., Waitman, L.R., Omenn, G.S., Malovini, A., Moore, J.H., Beaulieu-Jones, B.K., Tibollo, V., Murphy, S.N., Yi, S.L., Keller, M.S., Bellazzi, R., Hanauer, D.A., Serret-Larmande, A., Gutierrez-Sacristan, A., Holmes, J.J., Bell, D.S., Mandl, K.D., Follett, R.W., Klann, J.G., Murad, D.A., Scudeller, L., Bucalo, M., Kirchoff, K., Craig, J., Obeid, J., Jouhet, V., Griffier, R., Cossin, S., Moal, B., Patel, L.P., Bellasi, A., Prokosch, H.U., Kraska, D., Sliz, P., Tan, A.L.M., Ngiam, K.Y., Zambelli, A., Mowery, D.L., Schiver, E., Devkota, B., Bradford, R.L., Daniar, M., Daniel, C., Benoit, V., Bey, R., Paris, N., Serre, P., Orlova, N., Dubiel, J., Hilka, M., Jannot, A.S., Breant, S., Leblanc, J., Griffon, N., Burgun, A., Bernaux, M., Sandrin, A., Salamanca, E., Cormont, S., Ganslandt, T., Gradinger, T., Champ, J., Boeker, M., Martel, P., Esteve, L., Gramfort, A., Grisel, O., Leprovost, D., Moreau, T., Varoquaux, G., Vie, J.J., Wassermann, D., Mensch, A., Caucheteux, C., Haverkamp, C., Lemaitre, G., Bosari, S., Krantz, I.D., South, A., Cai, T., & Kohane, I.S. (2020). International electronic health record-derived COVID-19 clinical course profiles: The 4CE consortium. npj Digital Medicine, 3 (1), 1–9. https://doi.org/10.1038/s41746-020-00308-0.
Article
Google Scholar
Cao, F., & Bao, Q. (2020). A survey on image semantic segmentation methods with convolutional neural network. In 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). https://doi.org/10.1109/CISCE50729.2020.00103 (pp. 458–462).
Car, Z., Baressi Šegota, S, Anđelić, N., Lorencin, I., & Mrzljak, V. (2020). Modeling the spread of COVID-19 infection using a multilayer perceptron. Computational and Mathematical Methods in Medicine, 2020, 5714714. https://doi.org/10.1155/2020/5714714.
Article
Google Scholar
Chae, S., Kwon, S., & Lee, D. (2018). Predicting infectious disease using deep learning and big data. International Journal of Environmental Research and Public Health, 15(8), 1596. https://doi.org/10.3390/ijerph15081596.
Article
Google Scholar
Chatterjee, A., Gerdes, M.W., & Martinez, S.G. (2020). Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors, 20 (11), 3089. https://doi.org/10.3390/s20113089.
Article
Google Scholar
Che, M., Yao, K., Che, C., Cao, Z., & Kong, F. (2021). Knowledge-Graph-Based Drug Repositioning against COVID-19 by graph convolutional network with attention mechanism. Future Internet, 13(1), 13. https://doi.org/10.3390/fi13010013.
Article
Google Scholar
Chellasamy, G., Arumugasamy, S.K., Govindaraju, S., & Yun, K. (2020). Analytical insights of COVID-19 pandemic. TrAC Trends in Analytical Chemistry, 133, 116072. https://doi.org/10.1016/j.trac.2020.116072.
Article
Google Scholar
Chen, J., Li, K., Zhang, Z., Li, K., & Yu, P.S. (2020). A survey on applications of artificial intelligence in fighting against COVID-19. arXiv:2007.02202 [cs, q-bio].
Cohen, I.G., Gostin, L.O., & Weitzner, D.J. (2020a). Digital smartphone tracking for COVID-19: Public health and civil liberties in tension. Journal of the American Medical Association, 323(23), 2371–2372. https://doi.org/10.1001/jama.2020.8570.
Article
Google Scholar
Cohen, J. (2020). Vaccine designers take first shots at covid-19. Science, 368(6486), 14–16. https://doi.org/10.1126/science.368.6486.14.
Article
Google Scholar
Cohen, J.P., Morrison, P., & Dao, L. (2020b). Covid-19 image data collection. arXiv:2003.11597. https://github.com/ieee8023/covid-chestxray-dataset.
Ćosić, K., Popović, S., Šarlija, M., Kesedžić, I., & Jovanovic, T. (2020). Artificial intelligence in prediction of mental health disorders induced by the COVID-19 pandemic among health care workers. Croatian Medical Journal, 61(3), 279–288. https://doi.org/10.3325/cmj.2020.61.279, 32643346.
Cowton, J., Kyriazakis, I., Plötz, T, & Bacardit, J. (2018). A combined deep learning GRU-Autoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors. Sensors, 18 (8), 2521. https://doi.org/10.3390/s18082521.
Crooke, S.N., Ovsyannikova, I.G., Kennedy, R.B., & Poland, G.A. (2020). Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports, 10(1), 14179. https://doi.org/10.1038/s41598-020-70864-8. https://www.nature.com/articles/s41598-020-70864-8.
Article
Google Scholar
Della Rossa, F., Salzano, D., Di Meglio, A., De Lellis, F., Coraggio, M., Calabrese, C., Guarino, A., Cardona-Rivera, R., De Lellis, P., Liuzza, D., Lo Iudice, F., Russo, G., & di Bernardo, M. (2020). A network model of Italy shows that intermittent regional strategies can alleviate the covid-19 epidemic. Nature Communications, 11(1), 5106. https://doi.org/10.1038/s41467-020-18827-5.
Article
Google Scholar
Dhiman, G., Chang, V., Singh, K.K., & Shankar, A. (2021). Adopt: automatic deep learning and optimization-based approach for detection of novel coronavirus covid-19 disease using x-ray images. Journal of Biomolecular Structure and Dynamics, 0(0), 1–13. https://doi.org/10.1080/07391102.2021.1875049.
Article
Google Scholar
Doanvo, A., Qian, X., Ramjee, D., Piontkivska, H., Desai, A., & Majumder, M. (2020). Machine learning maps research needs in COVID-19 literature. Patterns, pp. 100123.
Ekins, S., Puhl, A.C., Zorn, K.M., Lane, T.R., Russo, D.P., Klein, J.J., Hickey, A.J., & Clark, A.M. (2019). Exploiting machine learning for end-to-end drug discovery and development. Nature Materials, 18(5), 435–441. https://doi.org/10.1038/s41563-019-0338-z.
Article
Google Scholar
Elish, M.C., & Watkins, E.A. (2020). Repairing innovation: A Study of Integrating AI in Clinical Care. https://datasociety.net/library/repairing-innovation/https://datasociety.net/library/repairing-innovation/. https://datasociety.net/pubs/repairing-innovation.pdf.
ęerban, O, Thapen, N., Maginnis, B, Hankin, C., & Foot, V. (2019). Real-time processing of social media with SENTINEL: a syndromic surveillance system incorporating deep learning for health classification. Information Processing & Management, 56(3), 1166–1184. https://doi.org/10.1016/j.ipm.2018.04.011.
Article
Google Scholar
Erikson, S.L. (2018). Cell phones ≠ self and other problems with big data detection and containment during epidemics. Medical Anthropology Quarterly, 32(3), 315–339. https://doi.org/10.1111/maq.12440.
Article
Google Scholar
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z.
Article
Google Scholar
Fanioudakis, E., Geismar, M., & Potamitis, I. (2018). Mosquito wingbeat analysis and classification using deep learning. In 2018 26th European Signal Processing Conference (EUSIPCO) (pp. 2410–2414).
Fong, S., Li, G., Dey, N., Gonzalez Crespo, R., & Herrera-Viedma, E. (2020a). Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak. International Journal of Interactive Multimedia and Artificial Intelligence, 6(Special Issue on Soft Computing), 132–140. https://doi.org/10.9781/ijimai.2020.02.002.
Article
Google Scholar
Fong, S.J., Dey, N., & Chaki, J. (2020b). AI-Empowered Data Analytics for Coronavirus Epidemic Monitoring and Control. Artificial Intelligence for Coronavirus Outbreak, pp. 47–71 https://doi.org/10.1007/978-981-15-5936-5\_3, null.
Fong, S.J., Li, G., Dey, N., Crespo, R.G., & Herrera-Viedma, E. (2020c). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied Soft Computing, 93, 106282. https://doi.org/10.1016/j.asoc.2020.106282.
Article
Google Scholar
Fountain-Jones, N.M., Machado, G., Carver, S., Packer, C., Recamonde-Mendoza, M., & Craft, M.E. (2019). How to make more from exposure data? an integrated machine learning pipeline to predict pathogen exposure. Journal of Animal Ecology, 88(10), 1447–1461. https://doi.org/10.1111/1365-2656.13076.
Article
Google Scholar
Gates, B. (2015). The next epidemic – lessons from Ebola. New England Journal of Medicine, 372(15), 1381–1384. https://doi.org/10.1056/NEJMp1502918.
Article
Google Scholar
Geoghegan, J.L., & Holmes, E.C. (2017). Predicting virus emergence amid evolutionary noise. Open Biology, 7(10), 170189. https://doi.org/10.1098/rsob.170189.
Article
Google Scholar
Ghamizi, S., Rwemalika, R., Cordy, M., Veiber, L., Bissyandé, T.F., Papadakis, M., Klein, J., & Le Traon, Y. (2020). Data-driven simulation and optimization for Covid-19 exit strategies. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Association for Computing Machinery, KDD ’20. https://doi.org/10.1145/3394486.3412863 (pp. 3434–3442). New York.
Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., Kieseberg, P., & Holzinger, A. (2018). Explainable AI: The New 42?. In Holzinger, A., Kieseberg, P., Tjoa, A.M., & Weippl, E. (Eds.) Machine Learning and Knowledge Extraction, Springer International Publishing, Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-99740-7\_21 (pp. 295–303).
Gupta, M., Jain, R., Taneja, S., Chaudhary, G., Khari, M., & Verdú, E. (2021). Real-time measurement of the uncertain epidemiological appearances of COVID-19 infections. Applied Soft Computing, 101, 107039. https://doi.org/10.1016/j.asoc.2020.107039.
Article
Google Scholar
Harari, Y.N. (2020). Yuval Noah Harari: The world after coronavirus. https://www.ft.com/content/19d90308-6858-11ea-a3c9-1fe6fedcca75.
Heinrichs, B., & Eickhoff, S.B. (2020). Your evidence? Machine learning algorithms for medical diagnosis and prediction. Human Brain Mapping, 41(6), 1435–1444. https://doi.org/10.1002/hbm.24886.
Article
Google Scholar
Heinson, A.I., Gunawardana, Y., Moesker, B., Hume, C.C.D., Vataga, E., Hall, Y., Stylianou, E., McShane, H., Williams, A., Niranjan, M., & Woelk, C.H. (2017). Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. International Journal of Molecular Sciences, 18(2), 312. https://doi.org/10.3390/ijms18020312. https://www.mdpi.com/1422-0067/18/2/312.
Article
Google Scholar
Honigsbaum, M. (2020). The Pandemic century–A History of Global Contagion from the Spanish Flu to Covid-19. Cambridge, MA: Penguin.
Horry, M.J., Chakraborty, S., Paul, M., Ulhaq, A., Pradhan, B., Saha, M., & Shukla, N. (2020). COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access, 8, 149808–149824. https://doi.org/10.1109/ACCESS.2020.3016780.
Article
Google Scholar
Hsu, J. (2020). Can AI make bluetooth contact tracing better? - IEEE spectrum. IEEE spectrum: Technology, Engineering, and Science News.
Ismael, A.M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, 114054. https://doi.org/10.1016/j.eswa.2020.114054.
Article
Google Scholar
Jin, C., Chen, W., Cao, Y., Xu, Z., Tan, Z., Zhang, X., Deng, L., Zheng, C., Zhou, J., Shi, H., & Feng, J. (2020). Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nature Communications, 11(1), 5088. https://doi.org/10.1038/s41467-020-18685-1.
Article
Google Scholar
Kang, H., Xia, L., Yan, F., Wan, Z., Shi, F., Yuan, H., Jiang, H., Wu, D., Sui, H., Zhang, C., & Shen, D. (2020). Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multi-View representation learning. IEEE Transactions on Medical Imaging, 39(8), 2606–2614. https://doi.org/10.1109/TMI.2020.2992546.
Article
Google Scholar
Karadayi, Y., Aydin, M.N., & Öǧrencí, A.S. (2020). Unsupervised anomaly detection in multivariate Spatio-Temporal data using deep learning: Early detection of COVID-19 outbreak in Italy. IEEE Access, 8, 164155–164177. https://doi.org/10.1109/ACCESS.2020.3022366.
Article
Google Scholar
Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins, J., Diez-Cecilia, E., Kelly, B., Goodarzi, H., & Yuan, J.S. (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3, 65. https://doi.org/10.3389/frai.2020.00065.
Article
Google Scholar
Kim, M., Kang, J., Kim, D., Song, H., Min, H., Nam, Y., Park, D., & Lee, J.G. (2020). Hi-COVIDNet: Deep learning approach to predict inbound COVID-19 patients and case study in South Korea. https://doi.org/10.1145/3394486.3412864 (pp. 3466–3473). New York.
Kohlmeier, S., Lo, K., Wang, L.L., & Yang, J. (2020). COVID-19 Open Research Dataset (CORD-19). https://doi.org/10.5281/zenodo.3813567.
Kricka, L.J., Polevikov, S., Park, J.Y., Fortina, P., Bernardini, S., Satchkov, D., Kolesov, V., & Grishkov, M. (2020). Artificial intelligence-Powered search tools and resources in the fight against COVID-19. EJIFCC, 31(2), 106–116.
Google Scholar
Kuleshov, M.V., Stein, D.J., Clarke, D.J., Kropiwnicki, E., Jagodnik, K.M., Bartal, A., Evangelista, J.E., Hom, J., Cheng, M., Bailey, A., Zhou, A., Ferguson, L.B., Lachmann, A., & Ma’ayan, A. (2020). The COVID-19 Drug and Gene Set Library. Patterns (New York, Ny), 1(6), 100090. https://doi.org/10.1016/j.patter.2020.100090, 32838343.
Google Scholar
Laponogov, I., Gonzalez, G., Shepherd, M., Qureshi, A., Veselkov, D., Charkoftaki, G., Vasiliou, V., Youssef, J., Mirnezami, R., Bronstein, M., & Veselkov, K. (2021). Network machine learning maps phytochemically rich “Hyperfoods” to fight COVID-19. Human Genomics, 15(1), 1. https://doi.org/10.1186/s40246-020-00297-x.
Article
Google Scholar
Levin, J.M., Oprea, T.I., Davidovich, S., Clozel, T., Overington, J.P., Vanhaelen, Q., Cantor, C.R., Bischof, E., & Zhavoronkov, A. (2020). Artificial intelligence, drug repurposing and peer review. Nature Biotechnology, 38(10), 1127–1131. https://doi.org/10.1038/s41587-020-0686-x.
Article
Google Scholar
Li, J., Xu, Q., Shah, N., & Mackey, T.K. (2019). A machine learning approach for the detection and characterization of illicit drug dealers on instagram: Model evaluation study. Journal of Medical Internet Research, 21(6), e13803. https://doi.org/10.2196/13803.
Article
Google Scholar
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905, 32191588.
Article
Google Scholar
Liang, W., Yao, J., Chen, A., Lv, Q., Zanin, M., Liu, J., Wong, S., Li, Y., Lu, J., Liang, H., Chen, G., Guo, H., Guo, J., Zhou, R., Ou, L., Zhou, N., Chen, H., Yang, F., Han, X., Huan, W., Tang, W., Guan, W., Chen, Z., Zhao, Y., Sang, L., Xu, Y., Wang, W., Li, S., Lu, L., Zhang, N., Zhong, N., Huang, J., & He, J. (2020). Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, 11(1), 3543. https://doi.org/10.1038/s41467-020-17280-8.
Article
Google Scholar
Liu, G., Carterm, B., & Gifford, D.K. (2021). Predicted Cellular Immunity Population Coverage Gaps for SARS-CoV-2 Subunit Vaccines and Their Augmentation by Compact Peptide Sets. Cell Systems, 12(1), 102–107.e4. https://doi.org/10.1016/j.cels.2020.11.010. https://www.sciencedirect.com/science/article/pii/S2405471220304610.
Article
Google Scholar
Loey, M., Manogaran, G., Taha, M.H.N., & Khalifa, N.E.M. (2021). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. https://doi.org/10.1016/j.measurement.2020.108288.
Article
Google Scholar
Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., Mulders, D.G.J.C., Molenkamp, R., Perez-Romero, C.A., Claassen, E., Garssen, J., & Kraneveld, A.D. (2021). Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning. Scientific Reports, 11(1), 947. https://doi.org/10.1038/s41598-020-80363-5.
Article
Google Scholar
Lu Wang, L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Eide, D., Funk, K., Kinney, R., Liu, Z., Merrill, W., Mooney, P., Murdick, D., Rishi, D., Sheehan, J., Shen, Z., Stilson, B., Wade, A.D., Wang, K., Wilhelm, C., Xie, B., Raymond, D., Weld, D.S., Etzioni, O., & Kohlmeier, S. (2020). CORD-19: The Covid-19 Open Research Dataset. arXiv:32510522.
Mackey, T.K., Li, J., Purushothaman, V., Nali, M., Shah, N., Bardier, C., Cai, M., & Liang, B. (2020). Big data, natural language processing, and deep learning to detect and characterize illicit COVID-19 product sales: Infoveillance study on twitter and instagram. JMIR Public Health and Surveillance, 6(3), e20794. https://doi.org/10.2196/20794.
Article
Google Scholar
Malone, B., Simovski, B., Moliné, C., Cheng, J., Gheorghe, M., Fontenelle, H., Vardaxis, I., Tennøe, S., Malmberg, J.A., Stratford, R., & Clancy, T. (2020). Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs. Scientific Reports, 10(1), 22375. https://doi.org/10.1038/s41598-020-78758-5.
Article
Google Scholar
McNeil, D.G. Jr. (2020). Coronavirus Has Become a Pandemic, W.H.O. Says. The New York Times.
Mei, X., Lee, H.C., Ky, Diao, Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P.M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li, S., Shan, H., Lv, J., Zhao, T., Xia, J., Long, Q., Steinberger, S., Jacobi, A., Deyer, T., Luksza, M., Liu, F., Little, B.P., Fayad, Z.A., & Yang, Y. (2020). Artificial intelligence–Enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 26(8), 1224–1228. https://doi.org/10.1038/s41591-020-0931-3.
Article
Google Scholar
Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Jamalipour Soufi, G. (2020). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Medical Image Analysis, 65, 101794. https://doi.org/10.1016/j.media.2020.101794.
Article
Google Scholar
Miseikis, J., Caroni, P., Duchamp, P., Gasser, A., Marko, R., Miseikiene, N., Zwilling, F., de Castelbajac, C., Eicher, L., Fruh, M., et al. (2020). Lio-a personal robot assistant for human-robot interaction and care applications. IEEE Robotics and Automation Letters, 5(4), 5339–5346. https://doi.org/10.1109/LRA.2020.3007462.
Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. https://doi.org/10.1038/s42256-019-0114-4.
Article
Google Scholar
Murphy, K., Smits, H., Knoops, A.J.G., Korst, M.B.J.M., Samson, T., Scholten, E.T., Schalekamp, S., Schaefer-Prokop, C.M., Philipsen, R.H.H.M., Meijers, A., Melendez, J., van Ginneken, B., & Rutten, M. (2020). COVID-19 On Chest Radiographs: a multireader evaluation of an artificial intelligence system. Radiology, 296(3), E166–E172. https://doi.org/10.1148/radiol.2020201874.
Article
Google Scholar
Nayak, J., Naik, B., Dinesh, P., Vakula, K., Rao, B.K., Ding, W., & Pelusi, D. (2021). Intelligent system for COVID-19 prognosis: A state-of-the-art survey. Applied Intelligence https://doi.org/10.1007/s10489-020-02102-7.
Oh, Y., Park, S., & Ye, J.C. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE Transactions on Medical Imaging, 39(8), 2688–2700. https://doi.org/10.1109/TMI.2020.2993291.
Article
Google Scholar
Ong, E., Wong, M.U., Huffman, A., & He, Y. (2020). COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Frontiers in Immunology 11 https://doi.org/10.3389/fimmu.2020.01581. https://www.frontiersin.org/articles/10.3389/fimmu.2020.01581/full.
Ou, S., He, X., Ji, W., Chen, W., Sui, L., Gan, Y., Lu, Z., Lin, Z., Deng, S., Przesmitzki, S., & Bouchard, J. (2020). Machine learning model to project the impact of COVID-19 on US motor gasoline demand. Nature Energy, 5(9), 666–673. https://doi.org/10.1038/s41560-020-0662-1.
Article
Google Scholar
Pan, F., Li, L., Liu, B., Ye, T., Li, L., Liu, D., Ding, Z., Chen, G., Liang, B., Yang, L., & Zheng, C. (2021). A novel deep learning-based quantification of serial chest computed tomography in Coronavirus Disease 2019 (COVID-19). Scientific Reports, 11(1), 417. https://doi.org/10.1038/s41598-020-80261-w.
Article
Google Scholar
Pinotti, F., Di Domenico, L., Ortega, E., Mancastroppa, M., Pullano, G., Valdano, E., Boelle, P.Y., Poletto, C., & Colizza, V. (2020). Tracing and analysis of 288 early sars-cov-2 infections outside china: a modeling study. PLOS Medicine, 17, e1003193. https://doi.org/10.1371/journal.pmed.1003193.
Article
Google Scholar
Polyzos, S., Samitas, A., & Spyridou, A.E. (2020). Tourism demand and the COVID-19 pandemic: an LSTM approach. Tourism Recreation Research, 0(0), 1–13. https://doi.org/10.1080/02508281.2020.1777053.
Article
Google Scholar
Porfido, L. (2020). During the emergency, ASST Vimercate Hospital chose REiLI, Fujifilm’s Artificial Intelligence, to support operators in the fight against COVID-19. https://www.fujifilm.eu/uk/news/article/during-the-emergency-asst-vimercate-hospital-chose-reili-fujifilms-artificial-intelligence-to-su.
Prachar, M., Justesen, S., Steen-Jensen, D.B., Thorgrimsen, S., Jurgons, E., Winther, O., & Bagger, F.O. (2020). Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Scientific Reports, 10(1), 20465. https://doi.org/10.1038/s41598-020-77466-4. https://www.nature.com/articles/s41598-020-77466-4.
Article
Google Scholar
Ramadass, L., & Arunachalam, S. (2020). Applying deep learning algorithm to maintain social distance in public place through drone technology. International Journal of Pervasive Computing and Communications, 16(3), 223–234. https://doi.org/10.1108/IJPCC-05-2020-0046.
Article
Google Scholar
Ramalingam, B., Yin, J., Rajesh Elara, M., Tamilselvam, Y.K., Mohan Rayguru, M., Muthugala, M.A.V.J., & Félix Gómez, B. (2020). A human support robot for the cleaning and maintenance of Door Handles Using a deep-Learning framework. Sensors, 20(12), 3543. https://doi.org/10.3390/s20123543.
Article
Google Scholar
Ramchandani, A., Fan, C., & Mostafavi, A. (2020). DeepCOVIDNet: An interpretable deep learning model for predictive surveillance of COVID-19 using heterogeneous features and their interactions. IEEE Access, 8, 159915–159930. https://doi.org/10.1109/ACCESS.2020.3019989.
Article
Google Scholar
Randhawa, G.S., Soltysiak, M.P.M., Roz, H.E., de Souza, C.P.E., Hill, K.A., & Kari, L. (2020). Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLOS ONE, 15(4), e0232391. https://doi.org/10.1371/journal.pone.0232391.
Article
Google Scholar
Reese, J.T., Unni, D., Callahan, T.J., Cappelletti, L., Ravanmehr, V., Carbon, S., Shefchek, K.A., Good, B.M., Balhoff, J.P., Fontana, T., Blau, H., Matentzoglu, N., Harris, N.L., Munoz-Torres, M.C., Haendel, M.A., Robinson, P.N., Joachimiak, M.P., & Mungall, C.J. (2021). KG-COVID-19: A framework to produce customized knowledge graphs for COVID-19 response. Patterns, 2(1), 100155. https://doi.org/10.1016/j.patter.2020.100155.
Article
Google Scholar
Rehm, G.B., Woo, S.H., Chen, X.L., Kuhn, B.T., Cortes-Puch, I., Anderson, N.R., Adams, J.Y., & Chuah, C.N. (2020). Leveraging IoTs and Machine Learning for Patient Diagnosis and Ventilation Management in the Intensive Care Unit. IEEE Pervasive Computing, 19(3), 68–78. https://doi.org/10.1109/MPRV.2020.2986767.
Article
Google Scholar
Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Huijben, I., Chennakeshava, N., Mento, F., Sentelli, A., Peschiera, E., Trevisan, R., Maschietto, G., Torri, E., Inchingolo, R., Smargiassi, A., Soldati, G., Rota, P., Passerini, A., van Sloun, R.J.G., Ricci, E., & Demi, L. (2020). Deep Learning for Classification and Localization of COVID-19 Markers in point-of-Care Lung Ultrasound. IEEE Transactions on Medical Imaging, 39(8), 2676–2687. https://doi.org/10.1109/TMI.2020.2994459.
Article
Google Scholar
Sadefo Kamdem, J., Bandolo Essomba, R., & Njong Berinyuy, J. (2020). Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities. Chaos, Solitons & Fractals, 140, 110215. https://doi.org/10.1016/j.chaos.2020.110215.
Article
Google Scholar
Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y., & Shen, D. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering, pp. 1–1. https://doi.org/10.1109/RBME.2020.2987975.
Shorten, C., Khoshgoftaar, T.M., & Furht, B. (2021). Deep Learning applications for COVID-19. Journal of Big Data, 8(1), 18. https://doi.org/10.1186/s40537-020-00392-9.
Article
Google Scholar
van Sloun, R.J.G., & Demi, L. (2020). Localizing b-Lines in lung ultrasonography by weakly supervised deep learning, in-Vivo results. IEEE Journal of Biomedical and Health Informatics, 24(4), 957–964. https://doi.org/10.1109/JBHI.2019.2936151.
Article
Google Scholar
Snider, M. (2020). Tests expand on whether wearables could predict coronavirus. https://medicalxpress.com/news/2020-05-wearables-coronavirus.html.
Sweeney, Y. (2020). Tracking the debate on COVID-19 surveillance tools. Nature Machine Intelligence, 2(6), 301–304. https://doi.org/10.1038/s42256-020-0194-1.
Article
Google Scholar
Ting, D.S.W., Carin, L., Dzau, V., & Wong, T.Y. (2020). Digital technology and COVID-19. Nature Medicine, 26(4), 459–461. https://doi.org/10.1038/s41591-020-0824-5.
Article
Google Scholar
van der Schaar, M., Alaa, A.M., Floto, A., Gimson, A., Scholtes, S., Wood, A., McKinney, E., Jarrett, D., Lio, P., & Ercole, A. (2020). How artificial intelligence and machine learning can help healthcare systems respond to COVID-19. Machine Learning https://doi.org/10.1007/s10994-020-05928-x.
Wang, B., Jin, S., Yan, Q., Xu, H., Luo, C., Wei, L., Zhao, W., Hou, X., Ma, W., Xu, Z., Zheng, Z., Sun, W., Lan, L., Zhang, W., Mu, X., Shi, C., Wang, Z., Lee, J., Jin, Z., Lin, M., Jin, H., Zhang, L., Guo, J., Zhao, B., Ren, Z., Wang, S., Xu, W., Wang, X., Wang, J., You, Z., & Dong, J. (2021a). AI-Assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Applied Soft Computing, 98, 106897. https://doi.org/10.1016/j.asoc.2020.106897.
Article
Google Scholar
Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Zheng, C. (2020). A weakly-Supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Transactions on Medical Imaging, 39(8), 2615–2625. https://doi.org/10.1109/TMI.2020.2995965.
Article
Google Scholar
Wang, Z., Xiao, Y., Li, Y., Zhang, J., Lu, F., Hou, M., & Liu, X. (2021b). Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognition, 110, 107613. https://doi.org/10.1016/j.patcog.2020.107613.
Article
Google Scholar
WHO GIP. (2009). Pandemic Influenza Preparedness and Response: A WHO Guidance Document. WHO Guidelines Approved by the Guidelines Review Committee, World Health Organization, Geneva, 23741778.
Ls, Xiao, Li, P., Sun, F., Zhang, Y., Xu, C., Zhu, H., Cai, F.Q., He, Y.L., Zhang, W.F., Ma, S.C., Hu, C., Gong, M., Liu, L., Shi, W., & Zhu, H. (2020). Development and validation of a deep learning-Based model using computed tomography imaging for predicting disease severity of coronavirus disease 2019. Frontiers in Bioengineering and Biotechnology, pp 8. https://doi.org/10.3389/fbioe.2020.00898.
Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Ni, Q., Chen, Y., Su, J., Lang, G., Li, Y., Zhao, H., Liu, J., Xu, K., Ruan, L., Sheng, J., Qiu, Y., Wu, W., Liang, T., & Li, L. (2020). A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering. https://doi.org/10.1016/j.eng.2020.04.010.
Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9. https://www.nature.com/articles/s41598-021-81749-9.
Article
Google Scholar
Zemmar, A., Lozano, A.M., & Nelson, B.J. (2020). The rise of robots in surgical environments during COVID-19. Nature Machine Intelligence, 2(10), 566–572. https://doi.org/10.1038/s42256-020-00238-2.
Article
Google Scholar
Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X., Zha, Y., Liang, W., Wang, C., Wang, K., Ye, L., Gao, M., Zhou, Z., Li, L., Wang, J., Yang, Z., Cai, H., Xu, J., Yang, L., Cai, W., Xu, W., Wu, S., Zhang, W., Jiang, S., Zheng, L., Zhang, X., Wang, L., Lu, L., Li, J., Yin, H., Wang, W., Li, O., Zhang, C., Liang, L., Wu, T., Deng, R., Wei, K., Zhou, Y., Chen, T., Lau, J.Y.N., Fok, M., He, J., Lin, T., Li, W., & Wang, G. (2020). Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell, 181(6), 1423–1433.e11. https://doi.org/10.1016/j.cell.2020.04.045.
Article
Google Scholar
Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020a). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 1–18. https://doi.org/10.1038/s41421-020-0153-3.
Article
Google Scholar
Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020b). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health https://doi.org/10.1016/S2589-7500(20)30192-8.
Zhu, G., Li, J., Meng, Z., Yu, Y., Li, Y., Tang, X., Dong, Y., Sun, G., Zhou, R., Wang, H., Wang, K., & Huang, W. (2020). Learning from large-Scale wearable device data for predicting epidemics trend of COVID-19. Discrete Dynamics in Nature and Society, 2020, e6152041. https://doi.org/10.1155/2020/6152041.
Article
Google Scholar