Skip to main content

Advertisement

Log in

Evaluation of the segmented inner retinal layers in exfoliation glaucoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the macular spectral domain optical coherence tomography (SD-OCT) measurements of the segmented inner retinal layers in patients with exfoliation syndrome (XFS), exfoliation glaucoma (XFG).

Methods

This prospective cross-sectional study included 28 eyes with XFS, 47 eyes with XFG, and 29 healthy controls. Thickness of the inner retinal layers, including retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) was obtained from the horizontal SD-OCT scans. Functional correlation of structural parameters was analyzed using the mean sensitivity (MS) values on 10–2 visual fields.

Results

The RNFL, GCL, and IPL were thinnest in eyes with XFG. Among these retinal layers, IPL was significantly thinner in eyes with XFS than healthy controls (p = 0.02) and the IPL thickness was significantly correlated with the corresponding MS scores on 10–2 visual fields (r = 0.492, p = 0.02) in eyes with XFS. Neither GCL nor RNFL thickness values demonstrated significant correlations with functional parameters in eyes with XFS (r = 0.377, p = 0.08; r = 0.212, p = 0.34). In eyes with XFG, the IPL thickness correlated with the visual field MS scores (r = 0.572, p = 0.0007), similar to the correlation of GCL (r = 0.585, p = 0.0005) thickness with visual field scores.

Conclusions

Segmented analysis of the macular IPL thickness presented a significant correlation with the 10–2 visual field scores not only in eyes with XFG but also in eyes with XFS. With respect to early dendritic/synaptic alterations in animal models, larger and longitudinal studies are encouraged to determine the predictive value of the IPL thickness for conversion of XFS to XFG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ritch R (2009) Exfoliation syndrome—the most common identifiable cause of open-angle glaucoma. J Glaucoma 3(2):176–177

    Google Scholar 

  2. Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972

    Article  PubMed  Google Scholar 

  3. Heijl A, Bengtsson B, Hyman L et al (2009) Natural history of open-angle glaucoma. Ophthalmology 116:2271–2276

    Article  PubMed  Google Scholar 

  4. Hyman L, Heijl A, Leske MC et al (2010) Natural history of intraocular pressure in the early manifest glaucoma trial: a 6-year follow-up. Arch Ophthalmol 128:601–607

    Article  PubMed  Google Scholar 

  5. Braunsmann C, Hammer CM, Rheinlaender J et al (2012) Evaluation of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy. Invest Ophthalmol Vis Sci 17:2960–2967

    Article  Google Scholar 

  6. Schlötzer-Schrehardt U, Hammer CM, Krysta AW et al (2012) LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation- specific risk of glaucoma. Ophthalmology 119:1832–1843

    Article  PubMed  Google Scholar 

  7. Zenkel M, Lewczuk P, Junemann A et al (2010) Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am J Pathol 176:2868–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beyazyıldız E, Cankaya AB, Beyazyıldız O et al (2014) Disturbed oxidant/antioxidant balance in aqueous humour of patients with exfoliation syndrome. Jpn J Ophthalmol 58:353–358

    Article  PubMed  Google Scholar 

  9. Suwan Y, Geyman LS, Fard MA et al (2018) Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma vs POAG and healthy controls: an optical coherence tomography angiography study. Asia Pac J Ophthalmol 7:84–89

    Google Scholar 

  10. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  CAS  PubMed  Google Scholar 

  11. Hood DC, Raza AS, de Moraes CG et al (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21

    Article  PubMed  Google Scholar 

  12. Zeimer R, Asrani S, Zou S et al (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study Ophthalmol 105:224–231

    CAS  Google Scholar 

  13. Mwanza J-C, Durbin MK, Budenz DL et al (2011) Profile and predictors of normal ganglion cell– inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7872–7879

    Article  PubMed  Google Scholar 

  14. Raza AS, Hood DC (2015) Evaluation of the structure–function relationship in glaucoma using a novel method for estimating the number of retinal ganglion cells in the human retina. Invest Ophthalmol Vis Sci 56:5548–5556

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tan O, Li G, Lu AT-H, Varma R, Huang D, for the Advanced Imaging for the Glaucoma Study Group (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956

    Article  PubMed  Google Scholar 

  16. Yuksel N, Altintas O, Celik M et al (2007) Analysis of retinal nerve fiber layer thickness in patients with pseudoexfoliation syndrome using optical coherence tomography. Ophthalmologica 22:299–304

    Article  Google Scholar 

  17. Rao A (2012) Clinical and optical coherence tomography features in unilateral versus bilateral pseudoexfoliation syndrome. J Ophthalmic Vis Res 7:197–202

    PubMed  PubMed Central  Google Scholar 

  18. Eltutar K, Acar F, Kayaarası Öztürker Z et al (2016) Structural changes in pseudoexfoliation syndrome evaluated with spectral domain optical coherence tomography. Curr Eye Res 41(4):513–520

    CAS  PubMed  Google Scholar 

  19. Aydin D, Kusbeci T, Uzunel UD et al (2016) Evaluation of retinal nerve fiber layer and ganglion cell complex thickness in unilateral exfoliation syndrome using optical coherence tomography. J Glaucoma 25:523–527

    Article  PubMed  Google Scholar 

  20. Ritch R, Schlotzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315

    Article  CAS  PubMed  Google Scholar 

  21. Agostinone J, Di Polo A (2015) Retinal ganglion cell dendrite pathology and synapse loss: Implications for glaucoma. Prog Brain Res 220:199–216

    Article  PubMed  Google Scholar 

  22. Chong RS, Martin KR (2014) Retinal ganglion cell dendrites and glaucoma: a case of missing the wood for the trees? Expert Rev Ophthalmol 9(3):149–152

    Article  CAS  Google Scholar 

  23. Shou T, Liu J, Wang W et al (2003) Differential dendritic shrinkage of a and b retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 44:3005–3010

    Article  PubMed  Google Scholar 

  24. Weber AJ, Kaufman PL, Hubbard WC (1998) Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 39:2304–2320

    CAS  PubMed  Google Scholar 

  25. Hollo ́ G (2014) Exfoliation syndrome and systemic cardiovascular diseases. J Glaucoma 23:S9-11

    Article  PubMed  Google Scholar 

  26. Andrikopoulos GK, Alexopoulos DK, Gartaganis SP (2014) Pseudoexfoliation syndrome and cardiovascular diseases. World J Cardiol 6:847–854

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hondur G, Ucgul Atilgan C, Hondur AM (2021) Sectorwise analysis of peripapillary vessel density and retinal nerve fiber layer thickness in exfoliation syndrome. Int Ophthalmol 41(11):3805–3813z

    Article  PubMed  Google Scholar 

  28. Traynis I, De Moraes CG, Raza AS et al (2014) Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field. JAMA Ophthalmol 132(3):291–297

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chien JL, Ghassibi MP, Patthanathamrongkasem T et al (2017) Glaucoma diagnostic capability of global and regional measurements of isolated ganglion cell layer and inner plexiform layer. J Glaucoma 26:208–215

    Article  PubMed  Google Scholar 

  30. Kim EK, Park H-YL, Park CK (2017) Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: dendritic degeneration of retinal ganglion cell. PLoS ONE 12(8):e0182404

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moghimi S, Fatehi N, Nguyen AH et al (2019) Relationship of the macular ganglion cell and inner plexiform layers in healthy and glaucoma eyes. Transl Vis Sci Technol 8(5):27

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aydın R, Barış M, Durmaz-Engin C et al (2021) Early localized alterations of the retinal inner plexiform layer in association with visual field worsening in glaucoma patients. PLoS One 16(2):e0247401

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee WJ, Baek SU, Kim YK et al (2019) Rates of ganglion cell-inner plexiform layer thinning in normal, open-angle glaucoma and pseudoexfoliation glaucoma eyes: a trend-based analysis. Invest Ophthalmol Vis Sci 60:599–604

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding has been received.

Author information

Authors and Affiliations

Authors

Contributions

All mentioned authors contributed to the study conception and design. All authors took part in data collection and analysis. GH and GT: wrote the manuscript. All authors read, revised and approved the final manuscript.

Corresponding author

Correspondence to Gozde Hondur.

Ethics declarations

Conflict of interest

None of the authors have any financial interest in any of the materials and methods used or described.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ankara Education and Research Hospital and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hondur, G., Sen, E., Bayraktar, S. et al. Evaluation of the segmented inner retinal layers in exfoliation glaucoma. Int Ophthalmol 43, 1841–1848 (2023). https://doi.org/10.1007/s10792-022-02583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02583-0

Keywords

Navigation