Skip to main content

Advertisement

Log in

Histological and molecular characterization of glaucoma model induced by one or two injections of microbeads to the anterior chamber of mice

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To characterize glaucoma-induced damage following injections of plastic microbeads into the anterior chamber of mice.

Methods

Mice were divided into three groups: a single plastic microbeads injection (n = 21); two consecutive plastic microbead injections to the right eye at 1-week intervals, 4 of which with two consecutive saline injections in the left eye (n = 15); and an additional control group of two consecutive saline injections at 1-week intervals (n = 6). Intraocular pressure (IOP) was measured weekly. Retinal thickness, ganglion cells (RGCs) and axonal loss, inflammatory and gliosis reactions were measured at week four. Molecular analysis using qRT-PCR in the microbeads injection groups focused on expression levels of inflammation and glaucoma-related genes.

Results

Mean IOP following single injection at 4 weeks was significantly elevated compared to baseline in injected eyes (14.5 ± 3.3 mmHg vs. 11.1 ± 2.5 mmHg, respectively, p = 0.003) and not in fellow eyes (13.2 ± 2.9 mmHg vs. 12.2 ± 2.9, respectively, NS). Six (35.3%) bead-injected eyes had IOP ≥ 17 mmHg compared with 2 (11.8%) saline-injected control eyes. Retinal thickness in injected and fellow eyes was 193.7 ± 15.5 µm and 223.9 ± 15.5 µm, respectively (p = 0.03). RGC loss in injected and fellow eyes was 16.0 ± 0.5 and 17.6 ± 0.7 cells per 200 µm, respectively (p = 0.005). Retinal gliosis, axonal loss and inflammatory cell infiltration to the bead-injected eyes were noted. Molecular analysis following double injection showed STAT3 expression decreased in the glaucoma-induced optic nerves (0.69 ± 0.3 vs. 1.16 ± 0.3, p = 0.04), but increased in the glaucoma-induced retinae (p = 0.05) versus saline; retinal IL-1β decreased significantly (0.04 ± 0.04 vs. 0.36 ± 0.2, p = 0.02). TNF-α, NFkB and SOD-1 expression did not change.

Conclusion

One/two injections of microbeads elevated IOP, with measurable neuronal damage. An inflammatory response was detected in the injured retina and optic nerve. The therapeutic significance of these findings should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

    Article  PubMed  Google Scholar 

  2. Kingman S (2004) Glaucoma is second leading cause of blindness globally. Bull World Health Organ 82:887–888

    PubMed  PubMed Central  Google Scholar 

  3. Gordon MO, Beiser JA, Brandt JD et al (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720. https://doi.org/10.1001/archopht.120.6.714

    Article  PubMed  Google Scholar 

  4. Lichter PR, Musch DC, Gillespie BW et al; CIGTS Study Group (2001) Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology 108:1943‒1953. https://doi.org/10.1016/s0161-6420(01)00873-9

  5. Zeng HL, Shi JM (2018) The role of microglia in the progression of glaucomatous neurodegeneration- a review. Int J Ophthalmol 11:143–149

    PubMed  PubMed Central  Google Scholar 

  6. Vohra R, Tsai JC, Kolko M (2013) The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol 58:311–320. https://doi.org/10.1016/j.survophthal.2012.08.010

    Article  PubMed  Google Scholar 

  7. Ebneter A, Casson RJ, Wood JPM, Chidlow G (2010) Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 51:6448–6460. https://doi.org/10.1167/iovs.10-5284

    Article  PubMed  Google Scholar 

  8. Aires ID, Ambrósio AF, Santiago AR (2017) Modeling human glaucoma: lessons from the in vitro models. Ophthalmic Res 57:77–86. https://doi.org/10.1159/000448480

    Article  PubMed  Google Scholar 

  9. Savinova OV, Sugiyama F, Martin JE et al (2001) Intraocular pressure in genetically distinct mice: an update and strain survey. BMC Genet 2:12. https://doi.org/10.1186/1471-2156-2-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thanos S, Naskar R (2004) Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant. Exp Eye Res 79:119–129. https://doi.org/10.1016/j.exer.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  11. Kuchtey J, Olson LM, Rinkoski T et al (2011) Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a canine model of primary open angle glaucoma. PLoS Genet 7:e1001306. https://doi.org/10.1371/journal.pgen.1001306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snyder KC, Oikawa K, Williams J et al (2019) Imaging distal aqueous outflow pathways in a spontaneous model of congenital glaucoma. Transl Vis Sci Technol 8:22. https://doi.org/10.1167/tvst.8.5.22

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dawson WW, Brooks DE, Hope GM et al (1993) Primary open angle glaucomas in the rhesus monkey. Br J Ophthalmol 77:302–310. https://doi.org/10.1136/bjo.77.5.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA (2010) Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 91:415–424. https://doi.org/10.1016/j.exer.2010.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson TV, Tomarev SI (2010) Rodent models of glaucoma. Brain Res Bull 81:349–358. https://doi.org/10.1016/j.brainresbull.2009.04.004

    Article  PubMed  Google Scholar 

  16. Goldenberg-Cohen N, Dadon-Bar-El S, Hasanreisoglu M et al (2009) Possible neuroprotective effect of brimonidine in a mouse model of ischaemic optic neuropathy. Clin Exp Ophthalmol 37:718–729. https://doi.org/10.1111/j.1442-9071.2009.02108.x

    Article  PubMed  Google Scholar 

  17. Goldenberg-Cohen N, Dratviman-Storobinsky O, El Dadon Bar S, Cheporko Y, Hochhauser E (2011) Protective effect of Bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice. J Neuroophthalmol 31:331–338. https://doi.org/10.1097/WNO.0b013e318227e4fb

    Article  PubMed  Google Scholar 

  18. Adachi M, Takahashi K, Nishikawa M, Miki H, Uyama M (1996) High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats. Graefe’s Arch Clin Exp Ophthalmol 234:445–451. https://doi.org/10.1007/BF02539411

    Article  CAS  Google Scholar 

  19. Büchi ER (1992) Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res 55:605–613. https://doi.org/10.1016/s0014-4835(05)80173-3

    Article  PubMed  Google Scholar 

  20. Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N (2019) IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front Immunol 10:1618. https://doi.org/10.3389/fimmu.2019.01618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markiewicz L, Pytel D, Mucha B et al (2015) Altered expression levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a risk factor for the elevated IOP and optic nerve head damage in the primary open-angle glaucoma patients. Biomed Res Int 2015:812503. https://doi.org/10.1155/2015/812503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang N, Chintala SK, Fini ME, Schuman JS (2001) Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med 7:304–309. https://doi.org/10.1038/85446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benitez-Del-Castillo J, Cantu-Dibildox J, Sanz-González SM, Zanón-Moreno V, Pinazo-duran MD (2019) Cytokine expression in tears of patients with glaucoma or dry eye disease: a prospective, observational cohort study. Eur J Ophthalmol 29:437–443. https://doi.org/10.1177/1120672118795399

    Article  PubMed  Google Scholar 

  24. Chi W, Li F, Chen H et al (2014) Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA 111:11181–11186. https://doi.org/10.1073/pnas.1402819111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mookherjee S, Banerjee D, Chakraborty S, Banerjee A, Mukhopadhyay I, Sen A, Ray K (2010) Association of IL1A and IL1B loci with primary open angle glaucoma. BMC Med Genet 11:99. https://doi.org/10.1186/1471-2350-11-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chua J, Vania M, Cheung CM, Ang M, Chee SP, Yang H, Li J, Wong TT (2012) Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol Vis 18:431–438

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M (2011) In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 108:6282–6287. https://doi.org/10.1073/pnas.1015239108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Luo X, Ribeiro M, Bray ER et al (2016) Enhanced transcriptional activity and mitochondrial localization of STAT3 Co-induce axon regrowth in the adult central nervous system. Cell Rep 15:398–410. https://doi.org/10.1016/j.celrep.2016.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun D, Moore S, Jakobs TC (2017) Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries. J Exp Med 214:1411–1430. https://doi.org/10.1084/jem.20160412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang DY, Ray A, Rodgers K, Ergorul C, Hyman BT, Huang W, Grosskreutz CL (2010) Global gene expression changes in rat retinal ganglion cells in experimental glaucoma. I Invest Ophthalmol Vis Sci 51:4084–4095. https://doi.org/10.1167/IOVS.09-4864

    Article  PubMed  Google Scholar 

  31. Zhang S, Li W, Wang W, Zhang SS, Huang P, Zhang C (2013) Expression and activation of STAT3 in the astrocytes of optic nerve in a rat model of transient intraocular hypertension. PLoS ONE 8:e55683. https://doi.org/10.1371/journal.pone.0055683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goebel U, Scheid S, Spassov S et al (2021) Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regen Res 16:192–198. https://doi.org/10.4103/1673-5374.290098

    Article  CAS  PubMed  Google Scholar 

  33. Nicou CM, Pillai A, Passaglia CL (2021) Effects of acute stress, general anesthetics, tonometry, and temperature on intraocular pressure in rats. Exp Eye Res 210:108727. https://doi.org/10.1016/J.EXER.2021.108727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chae JJ, Prausnitz MR, Ethier CR (2021) Effects of general anesthesia on intraocular pressure in rabbits. J Am Assoc Lab Anim Sci 60:91–95

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jasien JV, Girkin CA, Downs JC (2019) Effect of anesthesia on intraocular pressure measured with continuous wireless telemetry in non-human primates. Invest Ophthalmol Vis Sci 60:3830–3834. https://doi.org/10.1167/IOVS.19-27758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partially supported in part by the Zanvyl and Isabelle Krieger Fund, Baltimore, MD (N.G.-C.). The funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Zahavi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All protocols were conducted in accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research and National Institutes of Health guidelines, and were approved and monitored by the Institutional Animal Research Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented in part at Israeli Society of Vision and Eye Research (ISVER) 2017, The Association for Research in Vision and Ophthalmology (ARVO), Baltimore, MD, June 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahavi, A., Friedman Gohas, M., Sternfeld, A. et al. Histological and molecular characterization of glaucoma model induced by one or two injections of microbeads to the anterior chamber of mice. Int Ophthalmol 42, 3763–3775 (2022). https://doi.org/10.1007/s10792-022-02372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02372-9

Keywords

Navigation