Skip to main content

Advertisement

Log in

Mesenchymal stem cells (MSCs) in Leber’s hereditary optic neuropathy (LHON): a potential therapeutic approach for future

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Optic neuropathy has become a new typical syndromic multi-system disease that leads to optic atrophy. This review discusses potential treatments and advances of Leber’s hereditary optic neuropathy (LHON), a sporadic genetic disorder. LHON is caused due to slight mutations in mitochondria leading to mitochondrial dysfunction, causing vision loss. There are no current significant treatments that have been proven to work for LHON.

Methods

However, extensive review was carried out on capable studies that have shown potential treatment sensory systems and are being evaluated currently. Some of these studies are in clinical trials, whereas other ones are still being planned. Here, we focus more on treatment based on mesenchymal stem cells-mediated mitochondrial transfer via various techniques. We discuss different mitochondrial transfer modes and possible ways to understand the mitochondria transfer technique’s phenotypic characteristics.

Conclusion

It is clearly understood that transfer of healthy mitochondria from MSC to target cell would regulate the range of reactive oxygen species and ATP’S, which are majorly responsible for mutation upon irregulating. Therefore, mitochondrial transfer is suggested and discussed in this review with various aspects.

Graphical abstract

The graphical abstract represents different means of mitochondrial transport like (a) Tunnelling nanotubules, (b) Extracellular vesicles, (c) Cell fusion and (d) Gap junctions. In (a) Tunnelling nanotubules, the signalling pathways TNF- α/TNF αip2 and NFkB/TNF αep2 are responsible for forming tunnels. Also, Miro protein acts as cargo for the transport of mitochondria with myosin’s help in the presence of RhoGTPases [35]. In (b) Extracellular vesicles, the RhoA ARF6 contributes to Actin/Cytoskeletal rearrangement leading to the shedding of microvesicles. Coming to (c) Cell fusion when there is a high amount of ATP, the cells tend to fuse when in close proximity leading to the transfer of mitochondria via EFF-1/HAP2 [48]. In (d) Gap Junctions, Connexin43 is responsible for the intracellular channel in the presence of more ATP [86].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Man PYW, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF (2003) The epidemiology of Leber hereditary optic neuropathy in the North East of England. America journ hum gene 72(2):333–339

    Article  CAS  Google Scholar 

  2. Priglinger C, Klopstock T, Rudolph G, Priglinger SG (2019) Leber’s hereditary optic neuropathy. Klin Monbl Augenheilkd 236(11):1271–1282. https://doi.org/10.1055/a-0972-1552

    Article  PubMed  Google Scholar 

  3. Meyerson C, Van Stavern G, McClelland C (2015) Leber hereditary optic neuropathy: current perspectives. ClinOphthal 9:1165–1176. https://doi.org/10.2147/OPTH.S62021

    Article  Google Scholar 

  4. Gueven, (2013) Therapeutic strategies for Leber’s hereditary optic neuropathy: a current update. Intract Rare Dis Res 2(4):130–135. https://doi.org/10.5582/irdr.2013.v2.4.130

    Article  Google Scholar 

  5. Wong A, Cortopassi G (2007) Mitochondrial genetic diseases. Neurobio Dis157–161. https://doi.org/10.1016/B978-012088592-3/50016-5

  6. Chinnery PF (1993) Mitochondrial Disorders Overview, GeneReviews®

  7. Zuccarelli M, Vella-Szijj J, Serracino-Inglott A, Borg JJ (2020) Treatment of Leber’s hereditary optic neuropathy: an overview of recent developments. Europ Journ Ophthal 30(6):1220–1227. https://doi.org/10.1177/1120672120936592

    Article  Google Scholar 

  8. Manickam A, Michael M, Ramasamy S (2017) Mitochondrial genetics and therapeutic overview of Leber’s hereditary optic neuropathy. Indian Journ Ophthal 65(11):087–1092. https://doi.org/10.4103/ijo.IJO_358_17

    Article  Google Scholar 

  9. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retinal Eye Res 23(1):53–89. https://doi.org/10.1016/j.preteyeres.2003.10.003

    Article  CAS  Google Scholar 

  10. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AMS, Elsas LJ, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427–1430. https://doi.org/10.1126/science.3201231

    Article  CAS  PubMed  Google Scholar 

  11. Ghelli A, Zanna C, Porcelli AM, Schapira AHV, MartinuzziA CV, Rugolo M (2003) Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. Journl Biol Chem 278(6):4145–4150. https://doi.org/10.1074/jbc.M210285200

    Article  CAS  Google Scholar 

  12. Abu-Amero KK, Bosley TM (2006) Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Invest opthal Vis Sci 47:4211–4220. https://doi.org/10.1167/iovs.06-0295

    Article  Google Scholar 

  13. Kirches E (2011) LHON: mitochondrial mutations and more. Curr Genom 12(1):44–54. https://doi.org/10.2174/138920211794520150

    Article  CAS  Google Scholar 

  14. Kaavya J, Mahalaxmi I, Devi SM, Santhy KS, Balachandar V (2019) Targeting phosphoinositide-3-kinase pathway in biliary tract cancers: a remedial route? J Cell Physio 234:8259–8273. https://doi.org/10.1002/jcp.27673

    Article  CAS  Google Scholar 

  15. Kim N, Cho SG (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28:387–402. https://doi.org/10.3904/kjim.2013.28.4.387

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Ann Rev Biomed Eng 12:87–117. https://doi.org/10.1146/annurev-bioeng-070909-105309

    Article  CAS  Google Scholar 

  17. Mundra V, Gerling IC, Mahato RI (2013) Mesenchymal stem cell-based therapy. Mol Pharma 10:77–89. https://doi.org/10.1021/mp3005148

    Article  CAS  Google Scholar 

  18. Nowakowski A, Walczak P, Janowski M, Lukomska B (2015) Genetic engineering of mesenchymal stem cells for regenerative medicine. Stem Cell Dev 24:2219–2242. https://doi.org/10.1089/scd.2015.0062

    Article  CAS  Google Scholar 

  19. Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, Xu R, Li X, Dai Y (2015) Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neuro Res 37:50–56. https://doi.org/10.1179/1743132814Y.0000000399

    Article  CAS  Google Scholar 

  20. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Intern 2013:732742. https://doi.org/10.1155/2013/732742

    Article  CAS  Google Scholar 

  21. Salgado AJBOG, Reis RLG, Sousa NJC, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current stem cell Res Ther 5:103–110. https://doi.org/10.2174/157488810791268564

    Article  CAS  Google Scholar 

  22. Mesentier-Louro LA, Zaverucha-Do-Valle C, Rosado-De-Castro PH, Silva AJ, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2016) Bone marrow-derived cells as a therapeutic approach to optic nerve diseases. Stem Cells Intern. https://doi.org/10.1155/2016/5078619

    Article  Google Scholar 

  23. Zhou X, Chu X, Yuan H, Qiu J, Zhao C, Xin D, Li T, Ma W, Wang H, Wang Z, Wang D (2019) Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21–5p/FasL gene axis. BiomedPharma 115:108818. https://doi.org/10.1016/j.biopha.2019.108818

    Article  CAS  Google Scholar 

  24. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DWH, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Comm 6:8472. https://doi.org/10.1038/ncomms9472

    Article  CAS  Google Scholar 

  25. Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K., Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez J M, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH H, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen ENM, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MHM, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell ves 4:27066. https://doi.org/10.3402/jev.v4.27066

  26. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nature Rev Drug Disc 12:347–357. https://doi.org/10.1038/nrd3978

    Article  CAS  Google Scholar 

  27. Guo H, Su Y, Deng F (2021) Effects of mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and future perspectives. Stem Cell Rev Rep 17:440–458. https://doi.org/10.1007/s12015-020-10085-8

    Article  PubMed  Google Scholar 

  28. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Canc 18:75. https://doi.org/10.1186/s12943-019-0991-5

    Article  Google Scholar 

  29. Kahroba H, Hejazi MS, Samadi N (2019) Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell Mol Life Sci 76:1747–1758. https://doi.org/10.1007/s00018-019-03035-2

    Article  CAS  PubMed  Google Scholar 

  30. Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell vesicl. https://doi.org/10.3402/jev.v2i0.20677.10.3402/jev.v2i0.20677

    Article  Google Scholar 

  31. Choi JY, Kim S, Kwak HB, Park DH, Park JH, Ryu JS, Park CS, Kang JH (2017) Extracellular vesicles as a source of urological biomarkers: lessons learned from advances and challenges in clinical applications to major diseases. Intern Neuro J 21:83–96. https://doi.org/10.5213/inj.1734961.458

    Article  Google Scholar 

  32. Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cell Dev 23:1233–1244. https://doi.org/10.1089/scd.2013.0479

    Article  CAS  Google Scholar 

  33. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Intern J Proteom 2012:971907. https://doi.org/10.1155/2012/971907

    Article  CAS  Google Scholar 

  34. Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, Giebel B (2017) Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Intern J Mol Sci 18:1450. https://doi.org/10.3390/ijms18071450

    Article  CAS  Google Scholar 

  35. Di Trapani M, Bassi G, Midolo M, Gatti A, Takam Kamga P, Cassaro A, Carusone R, Adamo A, Krampera M (2016) Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 6:24120. https://doi.org/10.1038/srep24120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G (2016) Stem cell-derived extracellular vesicles and immune-modulation. Front cell Devel Bio 4:83. https://doi.org/10.3389/fcell.2016.00083

    Article  Google Scholar 

  37. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9:509–529. https://doi.org/10.1007/s12195-016-0458-3

    Article  CAS  PubMed  Google Scholar 

  38. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 4:1131–1143. https://doi.org/10.5966/sctm.2015-0078rg/10.5966/sctm.2015-0078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou X, Chu X, Yuan H, Qiu J, Zhao C, Xin D, Li T, Ma W, Wang H, Wang Z, Wang D (2019) Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21–5p/FasL gene axis. Biomed Pharma 115:108818. https://doi.org/10.1016/j.biopha.2019.108818

    Article  CAS  Google Scholar 

  40. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W (2018) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotra 36:469–484. https://doi.org/10.1089/neu.2018.5835

    Article  Google Scholar 

  41. Mohana DS, Abishek KB, Mahalaxmi I, Balachandar V (2021) Lebers hereditary optic neuropathy: Current approaches and future perspectives on Mesenchymal stem cell-mediated rescue. Mitochondrion 60:201–218. https://doi.org/10.1016/j.mito.2021.08.013. Epub 2021 Aug 26. PMID: 34454075

  42. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    Article  CAS  Google Scholar 

  43. Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, Eslani M, Djalilian AR (2018) Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthal Vis Sci 59:5194–5200. https://doi.org/10.1167/iovs.18-24803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen T, Zheng QQ, Shen J, Li QS, Song XH, Luo HB, Hong CY, Yao K (2018) Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis. Chin Med J 131:704–712. https://doi.org/10.4103/0366-6999.226889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7:4323. https://doi.org/10.1038/s41598-017-04559-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang W, Wang Y, Kong Y (2019) Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthal Vis Sci 60:294–303. https://doi.org/10.1167/iovs.18-25617

    Article  CAS  PubMed  Google Scholar 

  47. Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM (2018) Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. J Circul biomar 7:1849454418807827. https://doi.org/10.1177/1849454418807827

    Article  CAS  Google Scholar 

  48. Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X (2016) Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 6:34562. https://doi.org/10.1038/srep34562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su W, Li Z, Jia Y, Zhu Y, Cai W, Wan P, Zhang Y, Zheng SG, Zhuo Y (2017) microRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma. J Mol Cell Bio 9:289–301. https://doi.org/10.1093/jmcb/mjx022

    Article  CAS  Google Scholar 

  50. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthal Vis Sci 51:2051–2059. https://doi.org/10.1167/iovs.09-4509

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through mirna-dependent mechanisms. Stem Cells Transl Med. https://doi.org/10.1002/sctm.16-0428

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mead B, Ahmed Z, Tomarev S (2018) Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthal Vis Sci 59:5473–5480. https://doi.org/10.1167/iovs.18-25310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, Wani MR, Roy SS, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. https://doi.org/10.1002/embj.201386030

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peragallo JH, Newman NJ (2015) Is there treatment for leber hereditary optic neuropathy? Curr Opinion Ophthal 26(6):450–457. https://doi.org/10.1097/ICU.0000000000000212

    Article  Google Scholar 

  55. Palacios-González C (2016) Mitochondrial replacement techniques: egg donation, genealogy and eugenics. Mon Bioeth Rev 34(1):37–51. https://doi.org/10.1007/s40592-016-0059-x

    Article  Google Scholar 

  56. Winter GF (2015) Mitochondrial donation. British J Midwif 23(4):236

    Article  Google Scholar 

  57. Claiborne A, English R, Kahn J (2016) Mitochondrial replacement techniques: ethical, social, and policy considerations. https://doi.org/10.17226/21871

  58. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K (2019) Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Intern 2019:9628536. https://doi.org/10.1155/2019/9628536

    Article  CAS  Google Scholar 

  59. Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O’Kane CM, Krasnodembskaya AD (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34(8):2210–2223. https://doi.org/10.1002/stem.237258

    Article  CAS  PubMed  Google Scholar 

  60. Mohana DS, Aswathy PN, Mahalaxmi I, Balachandar V (2021) Mitochondrialfunction and epigenetic outlook in Lebers hereditary optic neuropathy (LHON). Neurology Perspectives 1(2021):220–232. https://doi.org/10.1016/j.neurop.2021.07.003

    Article  Google Scholar 

  61. Paliwal S, Chaudhuri R, Agrawal A, Mohanty S (2018) Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. Journal of Biomedicle Science 25:31. https://doi.org/10.1186/s12929-018-0429-1

    Article  CAS  Google Scholar 

  62. Murray LMA, Krasnodembskaya AD (2019) Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells 37(1):14–25. https://doi.org/10.1002/stem.2922

    Article  PubMed  Google Scholar 

  63. Wu RX, Xu XY, Wang J, He XT, Sun HH, Chen FM (2018) Biomaterials for endogenous regenerative medicine: Coaxing stem cell homing and beyond. Appl Mater Tod 11:144–165. https://doi.org/10.1016/j.apmt.2018.02.004

    Article  Google Scholar 

  64. Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, Ferreira JV, Catarino S, Pinho MJ, Zuzarte M, Isabel Anjo S, Manadas BP, Sluijter J, Pereira P, Girao H (2015) Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep 9(5):13243. https://doi.org/10.1038/srep13243

    Article  CAS  Google Scholar 

  65. Smith OE, Murphy BD, Smith LC (2011) Derivation and potential applications of pluripotent stem cells for regenerative medicine in horses. Acta Scient Veterinary 39(1):s273–s283

    Google Scholar 

  66. Han J, Wu Q, Xia Y, Wagner MB, Xu C (2016) Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 16:740–750. https://doi.org/10.1016/j.scr.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, Xu R, Li X, Dai Y (2015) Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neurol Res 37:50–56. https://doi.org/10.1179/1743132814Y.0000000399

    Article  CAS  PubMed  Google Scholar 

  68. Li C, Cheung MKH, Han S, Zhang Z, Chen L, Chen J, Zeng H, Qiu J (2019) Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep. https://doi.org/10.1042/BSR20182417

  69. Mohana DS, Mahalaxmi I, Aswathy PN, Dhivya V, Sinnakaruppan M, Nimmisha E, Soumya K, Manoj KC, Ayan R, Abilash VG, Balachandar V (2020) Oxidative stress and mitochondrial transfer: a new dimension towards ocular diseases. Genes and Disesaes. Accepted on 27 november 2020

  70. Valero T (2014) Editorial (thematic issue: mitochondrial biogenesis: pharmacological approaches). Curr Pharma Desig. https://doi.org/10.2174/138161282035140911142118

    Article  Google Scholar 

  71. Anna TK, Karampitianis S, Karageorgou V, Kampourelli E, Kapasakis E, Theodossiadis P, Chatziralli I (2018) Current and emerging treatment modalities for Leber’s hereditary optic neuropathy: a review of the literature. Advanc in Ther 35(10):1510–1518

    Article  Google Scholar 

  72. Theodorou-Kanakari A, Karampitianis S, Karageorgou V, Kampourelli E, Kapasakis E, Theodossiadis P, Chatziralli I (2018) Current and emerging treatment modalities for Leber’s hereditary optic neuropathy: a review of the literature. Advanc in Ther 35(10):1510–1518. https://doi.org/10.1007/s12325-018-0776-z

    Article  Google Scholar 

  73. Lyseng-Williamson KA (2016) Idebenone: a review in Leber’s hereditary optic neuropathy. Drugs 76:805–813. https://doi.org/10.1007/s40265-016-0574-3

    Article  CAS  PubMed  Google Scholar 

  74. Heitz FD, Erb M, Anklin C, Robay D, Pernet V, Gueven N (2012) Idebenone protects against retinal damage and loss of vision in a mouse model of Leber’s hereditary optic neuropathy. PLoS ONE 7:e45182–e45182. https://doi.org/10.1371/journal.pone.0045182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, Atawan A, Chattopadhyay S, Schubert M, Garip A, Kernt M, Petraki D, Rummey C, Leinonen M, Metz G, Griffiths PG, Meier T, Chinnery PF (2011) A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134:2677–2686. https://doi.org/10.1093/brain/awr170

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rudolph G, Dimitriadis K, Büchner B, Heck S, Al-Tamami J, Seidensticker F, Rummey C, Leinonen M, Meier T, Klopstock T (2013) Effects of idebenone on color vision in patients with Leber hereditary optic neuropathy. J Neuro-Ophthal 33:30–36. https://doi.org/10.1097/WNO.0b013e318272c643

    Article  Google Scholar 

  77. Sadun AA, Chicani CF, Ross-Cisneros FN, Barboni P, Thoolen M, Shrader WD, Kubis K, Carelli V, Miller G (2012) Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Archives Neurol 69:331–338. https://doi.org/10.1001/archneurol.2011.2972

    Article  Google Scholar 

  78. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 52:534–542. https://doi.org/10.1002/ana.10354

    Article  CAS  PubMed  Google Scholar 

  79. ClinicalTrials.gov

  80. Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M (2008) Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. America Jour Hum Genet 83:373–387. https://doi.org/10.1016/j.ajhg.2008.08.013

    Article  CAS  Google Scholar 

  81. Wan X, Pei H, Zhao M, Yang S, Hu W, He H, Ma S, Zhang G, Dong X, Chen C, Wang D, Li B (2016) Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. SciRep 6:21587. https://doi.org/10.1038/srep21587

    Article  CAS  Google Scholar 

  82. Koilkonda RD, Yu H, Chou TH, Feuer WJ, Ruggeri M, Porciatti V, Tse D, Hauswirth WW, Chiodo V, Boye SL, Lewin AS, Neuringer M, Renner L, Guy J (2014) Safety and effects of the vector for the leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthal 132:409–420. https://doi.org/10.1001/jamaophthalmol.2013.7630

    Article  CAS  Google Scholar 

  83. Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, Corral-Debrinski M (2015) Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther - MethodsClinDevel 2:15003. https://doi.org/10.1038/mtm.2015.3

    Article  CAS  Google Scholar 

  84. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL (2017) Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology 124:1621–1634. https://doi.org/10.1016/j.ophtha.2017.05.016

    Article  PubMed  Google Scholar 

  85. Vignal C, Uretsky S, Fitoussi S, Galy A, Blouin L, Girmens JF, Bidot S, Thomasson N, Bouquet C, Valero S, Meunier S, Combal JP, Gilly B, Katz B, Sahel JA (2018) Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology 125:945–947. https://doi.org/10.1016/j.ophtha.2017.12.036

    Article  PubMed  Google Scholar 

  86. Yu-Wai-Man P, Newman NJ, Sergott R, Scannell Bryan M, Carelli V, Klopstock T, Moster M, Sadun AA, Sahel JA, Vignal C, Uretsky S (2017) Preliminary baseline characteristics of patients with Leber hereditary optic neuropathy (LHON) enrolled in the rescue and reverse clinical gene therapy trials. InvestigaOphthalVis Sci 58:3865

    Google Scholar 

  87. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85. https://doi.org/10.1038/nature08958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie N, Tang B (2016) The Application of human iPSCs in neurological diseases: from bench to bedside. Stem Cells Intern 2016:6484713. https://doi.org/10.1155/2016/6484713

    Article  CAS  Google Scholar 

  89. TachibanaM SM, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. https://doi.org/10.1038/nature08368

    Article  Google Scholar 

  90. Reznichenko AS, Huyser C, Pepper MS (2016) Mitochondrial transfer: Implications for assisted reproductive technologies. Appl Transl Genom. https://doi.org/10.1016/j.atg.2016.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cohen J, ScottR AM, Schimmel T, Munné S, Levron J, Wu L, Brenner C, Warner C, Willadsen S (1998) Ooplasmic transfer mature human oocytes. MolHum Reprod. https://doi.org/10.1093/molehr/4.3.269

    Article  Google Scholar 

  92. Bredenoord AL, Pennings G, De Wert G (2008) Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Human Reprod Upd. https://doi.org/10.1093/humupd/dmn035

    Article  Google Scholar 

  93. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell and Devel Biol. https://doi.org/10.3389/fcell.2016.00107

    Article  Google Scholar 

  94. Las G, Shirihai OS (2014) Miro1: new wheels for transferring mitochondria. EMBO Jour 33(9):939–941. https://doi.org/10.1002/embj.201488441

    Article  CAS  Google Scholar 

  95. Lin CS, SharpleyMS FW, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, MacGregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proceedings of the Nat Acadmy sci U.S.A. 109(49):20065–20070. https://doi.org/10.1073/pnas.1217113109

    Article  Google Scholar 

  96. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillaci A, Stepanova A, Strillacci A, Stepanova A, Lommarini L, Mastroleo C, Daly L, Galkin A, Thakur BK, Soplop N, Uryu K, Hoshino A, Norton L, Bonafe M, Cricca M, Gasparre G, Lyden D, Bromberg J (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the Nat Acadmy sci U.S.A 114(43):E9066–E9075. https://doi.org/10.1073/pnas.1718630114

  97. Kiriyama Y, Nochi H (2018) Intra- and Intercellular Quality Contrl Mech Mitochon Cells 7(1):1. https://doi.org/10.3390/cells7010001

  98. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555. https://doi.org/10.1038/nature18928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alonso-Alonso ML, García-Posadas L, Diebold Y (2021) Extracellular vesicles from human adipose-derived mesenchymal stem cells: a review of common cargos. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-021-10155-5

    Article  PubMed  PubMed Central  Google Scholar 

  100. Semenova E, Grudniak MP, Machaj EK, Bocian K, Magdalena CK, Trochonowicz M, Stepaniec IM, Murzyn M, Zagorska KE, Boruczkowski D, Kolanowski TJ, Oldak T, Rozwadowska N (2021) Mesenchymal Stromal Cells from Different Parts of Umbilical Cord: Approach to Comparison & Characteristics. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-021-10157-3

    Article  PubMed  PubMed Central  Google Scholar 

  101. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the Nat Acadmy sci U.S.A. 103(5):1283–1288. https://doi.org/10.1073/pnas.0510511103

    Article  CAS  Google Scholar 

  102. Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, Shi L, Meloni BP, Zhang C, Zheng M, Gao J (2021) Intercellular mitochondrial transfer as a means of tissue revitalization. Signal TransdTargtdTher 6:65. https://doi.org/10.1038/s41392-020-00440-z

    Article  Google Scholar 

  103. Mohana DS, Abishek KB, Ruth BC, Aswathy PN, Mahalaxmi I, Balachandar V (2021) Can deep learning revolutionize clinical understanding and diagnosis of optic neuropathy? Artif Intell Life Sci. https://doi.org/10.1016/j.ailsci.2021.100018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Indian Council of Medical Research (ICMR) (File No. 2018-2786/CMB/Adhoc-BMS), Government of India for providing necessary funding to complete this review article successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohana Devi Subramaniam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, M.D., Chirayath, R.B., Iyer, M. et al. Mesenchymal stem cells (MSCs) in Leber’s hereditary optic neuropathy (LHON): a potential therapeutic approach for future. Int Ophthalmol 42, 2949–2964 (2022). https://doi.org/10.1007/s10792-022-02267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02267-9

Keywords

Navigation