Skip to main content

Advertisement

Log in

Microperimetry, Humphrey field analyzer, and optical coherence tomography in detecting glaucoma: a comparative performance study

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate and compare the diagnostic performance of microperimetry (MP), visual field (VF) 10-2 and 24-2 tests, and spectral-domain optical coherence tomography (SD-OCT) in primary open-angle glaucoma (POAG).

Methods

The study consisted of 35 POAG and 42 control eyes were enrolled in this prospective study. Eligible participants were ≥ 50 years old. VF assessments were carried out using the Humphrey field analyzer (HFA) and Macular Integrity Assessment. Optic nerve head (ONH), retinal nerve fiber layer thickness (RNFLT), and ganglion cell inner-plexiform-layer thickness (GCIPLT) were measured by SD-OCT. Areas under the receiver operating characteristic curves (AUC) and sensitivities at 95% specificity were calculated for each parameter.

Results

HFA 24-2 had the largest AUC value among the functional parameters to differentiate POAG from control eyes [AUC: 0.950 (0.906–0.994), sensitivity at 95%:60]. HFA 24-2 showed a significantly better performance than the 10-2 test (p = 0.036). Among the SD-OCT structural parameters, minimum GCIPLT had the largest AUC value to differentiate POAG from control eyes [AUC: 0.952 (0.905–0.999), sensitivity at 95%:80]. In comparison of the functional and structural parameters, HFA 24-2 showed a significantly better performance than the 10-2 test (p = 0.036). In macular parameters, minimum GCPLT performed significantly better than HFA 10-2 (p = 0.015) in detecting POAG. There was no statistically significant difference between the comparative diagnostic performance of the RNFL, ONH, HFA, and MP (p > 0.05 for all comparisons).

Conclusion

The structural and functional test results revealed that GCIPLT measurements had the highest diagnostic performance in detecting POAG. HFA 24-2 test performed better than 10-2 test in distinguishing glaucoma from healthy eyes. MP showed a similar performance with HFA 10-2 and may be considered a complementary diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Aekell S (1984) Evaluation of nerve fiber layer assessment. Arch Ophthalmol 102:1766–1771

    Article  CAS  Google Scholar 

  2. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Article  CAS  Google Scholar 

  3. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY (2010) Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci 51:4646–4651

    Article  Google Scholar 

  4. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40:2242–2250

    CAS  PubMed  Google Scholar 

  5. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28

    Article  CAS  Google Scholar 

  6. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W et al (2010) Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Invest Ophthalmol Vis Sci 51:5724–5730

    Article  Google Scholar 

  7. Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM (2005) Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 46:2440–2443

    Article  Google Scholar 

  8. Skaf M, Bernardes AB, Cardillo JA, Costa RA, Melo LAS Jr, Castro JC et al (2006) Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography. Eye 20(4):431–439

    Article  CAS  Google Scholar 

  9. Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47(5):2006–2010

    Article  Google Scholar 

  10. Lisboa R, Paranhos A Jr, Weinreb RN, Zangwill LM, Leite MT, Medeiros F (2013) Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci 54(5):3417–3425

    Article  Google Scholar 

  11. Rohrschneider K, Bültmann S, Springer C (2008) Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 27(5):536–548

    Article  Google Scholar 

  12. Rao HL, Januvada M, Hussain RS, Pillutla LN, Begum VU, Chaitanya A et al (2015) Comparing the structure-function relationship at the macula with standard automated perimetry and microperimetry. Invest Ophthalmol Vis Sci 56:8063–8068

    Article  CAS  Google Scholar 

  13. Rao HL, Hussain RS, Januwada M, Pillutla LN, Begum VU, Chaitanya A et al (2017) Structural and functional assessment of macula to diagnose glaucoma. Eye (Lond) 31(4):593–600

    Article  CAS  Google Scholar 

  14. Anderson DR, Patella VM (1999) Automated static perimetry, 2nd edn. Mosby, St Louis

    Google Scholar 

  15. Swets JA (1979) ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol 14(2):109–121

    Article  CAS  Google Scholar 

  16. Hodapp E, Parrish RK, 2nd Anderson DR (1993) Clinical decisions in glaucoma, 1st edn. St. Louis: Mosby-Year Book

  17. Wollstein G, Kagemann L, Bilonick RA, Ishikawa H, Folio LS, Gabriele ML et al (2012) Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point. Br J Ophthalmol 96:47–52

    Article  Google Scholar 

  18. Alasil T, Wang K, Yu F, Field MG, Lee H, Baniasadi N et al (2014) Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model. Am J Ophthalmol 157:953–959

    Article  Google Scholar 

  19. Weinreb RN, Liebmann JM, Medeiros FA (2016) Diagnosis of primary open-angle glaucoma: consensus

  20. Grillo LM, Wang DL, Ramachandran R, Ehrlich AC, De Moraes G, Ritch R et al (2016) The 24-2 visual field test misses central macular damage confirmed by the 10-2 visual field test and optical coherence tomography. Transl Vis Sci Technol 5:15

    Article  Google Scholar 

  21. Sullivan-Mee M, Karin Tran MT, Pensyl D, Tsan G, Katiyar S (2016) Prevalence, features, and severity of glaucomatous visual field loss measured with the 10-2 achromatic threshold visual field test. Am J Ophthalmol 168:40–51

    Article  Google Scholar 

  22. Wu Z, Medeiros FA, Weinreb RN, Zangwill LM (2018) Performance of the 10-2 and 24-2 visual field tests for detecting central visual field abnormalities in glaucoma. Am J Ophthalmol 196:10–17

    Article  Google Scholar 

  23. Lima VC, Prata TS, De Moraes CG, Kim J, Seiple W, Rosen RB et al (2010) A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br J Ophthalmol 94:64–67

    Article  CAS  Google Scholar 

  24. Orzalesi N, Miglior S, Lonati C, Rosetti L (1998) Microperimetry of localized retinal nerve fiber layer defects. Vision Res 38:763–771

    Article  CAS  Google Scholar 

  25. Oztürk F, Yavas GF, Küsbeci T, Ermiş SS (2008) A comparison among Humphrey field analyzer, Microperimetry, and Heidelberg Retina Tomograph in the evaluation of macula in primary open angle glaucoma. J Glaucoma 17(2):118–121

    Article  Google Scholar 

  26. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN et al (2004) Comparision of the GDxVCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope and stratus OCT optical coherence tomograph for detection of glaucoma. Arch Ophthalmol 122(6):827–837

    Article  Google Scholar 

  27. Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M (2006) Comparison between GDxVcc scanning laser polarimetry and stratus OCT optical coherence tomograph in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 84(5):650–655

    Article  Google Scholar 

  28. Mwanza JC, Oakley JD, Budenz DL, Anderson DR (2011) Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 118:241–248

    Article  Google Scholar 

  29. Sung KR, Na JH, Lee Y (2012) Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma 21(7):498–504

    Article  Google Scholar 

  30. Hwang YH, Kim YY (2012) Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 53:2226–2234

    Article  Google Scholar 

  31. Leung CK, Cheung CY, Weinreb RN, Qui Q, Liu S, Li H et al (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116:1257–1263

    Article  Google Scholar 

  32. Park SB, Sung KR, Kang SY, Kim KR, Kook MS et al (2009) Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609

    Article  Google Scholar 

  33. Klamann MK, Grunert A, Maier AK, Gonnermann J, Joussen AM, Huber KK (2013) Comparison of functional and morphological diagnostics in glaucoma patients and healthy subjects. Ophthalmic Res 49:192–198

    Article  CAS  Google Scholar 

  34. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699

    Article  Google Scholar 

  35. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K (2011) Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 20:252–259

    Article  Google Scholar 

  36. Moreno PA, Konno B, Lima VC (2011) Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. Can J Ophthalmol 46:543–547

    Article  Google Scholar 

  37. Seong M, Sung KR, Choi EH (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452

    Article  Google Scholar 

  38. Leung CK, Chan WM, Yung WH (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400

    Article  Google Scholar 

  39. Gurses-Ozden R, Teng C, Vessani R, Zafar S, Liebmann JM, Ritch R (2004) Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3). J Glaucoma 13:238–244

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Study design: SA, Data collection and processing: SA, OT, Data analysis: ZKO, Literature search: ZKO, Writing and editing: SK, ZKO. Prof. Dr. EK was in charge of the statistical analysis (Biostatic Department, Hacettepe University School of Medicine, Ankara, Turkey).

Corresponding author

Correspondence to Serpil Akar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

This study has not been published elsewhere, and that it has not been submitted simultaneously for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akar, S., Tekeli, O. & Kayaarasi Ozturker, Z. Microperimetry, Humphrey field analyzer, and optical coherence tomography in detecting glaucoma: a comparative performance study. Int Ophthalmol 42, 2155–2165 (2022). https://doi.org/10.1007/s10792-022-02215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02215-7

Keywords

Navigation