Skip to main content

Advertisement

Log in

Thinning of the inner and outer retinal layers, including the ganglion cell layer and photoreceptor layers, in obstructive sleep apnea and hypopnea syndrome unrelated to the disease severity

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze the segmented layers of the macula in patients with obstructive sleep apnea and hypopnea syndrome (OSAS) using spectral domain optical coherence tomography (SD-OCT).

Material and Methods

This single-center, cross-sectional study included 31 OSAS patients and 31 age- and gender-matched control subjects. SD-OCT and overnight polysomnography were performed on all participants. The OSAS patients were categorized according to disease severity (mild, moderate, severe). The groups were compared in respect of each segmented macular layer through the use of segmentation software on SD-OCT. Total retinal thickness (RT), peripapillary retina nerve fiber layer (pRNFL) thickness, central corneal thickness (CCT) and intraocular pressure (IOP) values were also compared between the groups.

Results

Mean CCT (p:0.015) and nasal pRNFL values (p:0.042) were lower and mean IOP was higher (p:0.018) in OSAS patients than in the control group. The statistical analysis revealed significantly thinner total RT, inner retinal layers (IRL), outer retinal layers (ORL), photoreceptor layers (PRL) and ganglion cell layer (GCL) thicknesses in the OSAS groups compared to healthy subjects. No significant differences were found between the three OSAS subgroups in all segmented macular layers and pRNFL measurements.

Conclusion

The results of this study showed relatively thinner nasal pRNFL, total RT, IRL, ORL, PRL and GCL layers in OSAS patients compared to healthy subjects. Moreover, this thinning of the segmented layers was unrelated to disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data are available upon request.

References

  1. Guilleminault C (1994) Clinical features and evaluation of obstructive sleep apnea, 2nd edn. W B Saunders Co, Philadelphia, pp 667–677

    Google Scholar 

  2. De Cock VC, Benard-Serre N, Driss V, Granier M, Charif M, Carlander B, Desplan M, Langenier MC, Cugy D, Bayard S (2015) Supine sleep and obstructive sleep apnea syndrome in Parkinson’s disease. Sleep Med 16(12):1497–1501. https://doi.org/10.1016/j.sleep.2014.09.014

    Article  Google Scholar 

  3. Buratti L, Viticchi G, Falsetti L, Cagnetti C, Luzzi S, Bartolini M, Provinciali L, Silvestrini MJ (2014) Vascular impairment in Alzheimer’s disease: the role of obstructive sleep apnea. J Alzheimers Dis 38(2):445–453. https://doi.org/10.3233/JAD-131046

    Article  PubMed  Google Scholar 

  4. Liu S, Lin Y, Liu XJ (2016) Meta-analysis of association of obstructive sleep apnea with glaucoma. J Glaucoma 25(1):1–7. https://doi.org/10.1097/IJG.0000000000000357

    Article  PubMed  Google Scholar 

  5. Zhao X-J, Yang C-C, Zhang J-C, Zheng H, Liu P-P, Li QJ (2016) Obstructive sleep apnea and retinal nerve fiber layer thickness: a meta-analysis. J Glaucoma 25(4):e413–e418. https://doi.org/10.1097/IJG.0000000000000349

    Article  PubMed  Google Scholar 

  6. Kara N, Sayin N, Bayramoglu S, Savas A (2018) Peripapillary retina nerve fiber layer thickness and macular ganglion cell layer thickness in patients with obstructive sleep apnea syndrome. Eye (Lond) 32(4):701. https://doi.org/10.1038/eye.2017.279

    Article  CAS  Google Scholar 

  7. Abdal H, Pizzimenti JJ, Purvis CC (2006) The eye in sleep apnea syndrome. Sleep Med 7(2):107–115. https://doi.org/10.1016/j.sleep.2005.08.010

    Article  PubMed  Google Scholar 

  8. Dhillon S, Shapiro CM, Flanagan J (2007) Sleep-disordered breathing and effects on ocular health. Can J Ophthalmol 42(2):238–243. https://doi.org/10.3129/canjophthalmol.i07-029

    Article  PubMed  Google Scholar 

  9. Leibovitch I, Selva D (2006) Floppy eyelid syndrome: clinical features and the association with obstructive sleep apnea. Sleep Med 7(2):117–122. https://doi.org/10.1016/j.sleep.2005.07.001

    Article  PubMed  Google Scholar 

  10. Purvin VA, Kawasaki A, Yee RD (2000) Papilledema and obstructive sleep apnea syndrome. Arch Ophthalmol 118(12):1626–1630. https://doi.org/10.1001/archopht.118.12.1626

    Article  CAS  PubMed  Google Scholar 

  11. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117(5):603–624. https://doi.org/10.1016/s0002-9394(14)70067-4

    Article  CAS  PubMed  Google Scholar 

  12. Gracitelli CP, Duque-Chica GL, Moura ALdA, Roizenblatt M, Nagy BV, de Melo GR, Borba PD, Teixeira SH, Tufik S, Ventura DF (2016) Relationship between daytime sleepiness and intrinsically photosensitive retinal ganglion cells in glaucomatous disease. J Ophthalmol. https://doi.org/10.1155/2016/5317371

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duque-Chica GL, Gracitelli CP, Moura AL, Nagy BV, Vidal KS, de Melo G, Paranhos A, Cahali MB, Ventura DF (2019) Contributions of the melanopsin-expressing ganglion cells, cones, and rods to the pupillary light response in obstructive sleep apnea. Invest Ophthalmol Vis Sci 60(8):3002–3012. https://doi.org/10.1167/iovs.19-26944

    Article  CAS  PubMed  Google Scholar 

  14. (2014) International classification of sleep disorders. American Academy of Sleep Medicine, Darien

  15. Iber C (2007) The AASM manual for the scoring of sleep and associated events: Rules Terminology and Technical Specification

  16. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31(8):1609. https://doi.org/10.1097/IAE.0b013e3182247535

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koseoglu HI, Kanbay A, Ortak H, Karadağ R, Demir O, Demir S, Gunes A, Doruk S (2016) Effect of obstructive sleep apnea syndrome on corneal thickness. Int Ophthalmol 36(3):327–333. https://doi.org/10.1007/s10792-015-0122-2

    Article  PubMed  Google Scholar 

  18. Ekinci M, Huseyinoglu N, Cagatay HH, Ceylan E, Keles S, Gokce G (2013) Is there a relationship between sleep apnea and central corneal thickness? Curr Eye Res 38(11):1104–1109. https://doi.org/10.3109/02713683.2013.804578

    Article  PubMed  Google Scholar 

  19. Casas P, Ascaso FJ, Vicente E, Tejero-Garcés G, Adiego MI, Cristóbal JA (2013) Retinal and optic nerve evaluation by optical coherence tomography in adults with obstructive sleep apnea–hypopnea syndrome (OSAHS). Graefes Arch Clin Exp Ophthalmol 251(6):1625–1634. https://doi.org/10.1007/s00417-013-2268-9

    Article  PubMed  Google Scholar 

  20. Lin P-W, Friedman M, Lin H-C, Chang H-W, Wilson M, Lin M-CJ (2011) Normal tension glaucoma in patients with obstructive sleep apnea/hypopnea syndrome. J Glaucoma 20(9):553–558. https://doi.org/10.1097/IJG.0b013e3181f3eb81

    Article  PubMed  Google Scholar 

  21. Bendel R, Kaplan J, Heckman M, Fredrickson P, Lin S (2008) Prevalence of glaucoma in patients with obstructive sleep apnoea—a cross-sectional case-series. Eye 22(9):1105. https://doi.org/10.1038/sj.eye.6702846

    Article  CAS  PubMed  Google Scholar 

  22. He M, Han X, Wu H, Huang W (2016) Choroidal thickness changes in obstructive sleep apnea syndrome: a systematic review and meta-analysis. Sleep Breath 20(1):369–378. https://doi.org/10.1007/s11325-015-1306-8

    Article  PubMed  Google Scholar 

  23. Dacey DM, Liao H-W, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau K-W, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749. https://doi.org/10.1038/nature03387

    Article  CAS  PubMed  Google Scholar 

  24. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47(7):946–954. https://doi.org/10.1016/j.visres.2006.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo JF III, Czeisler CA (2007) Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17(24):2122–2128. https://doi.org/10.1016/j.cub.2007.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073. https://doi.org/10.1126/science.1067262

    Article  CAS  PubMed  Google Scholar 

  27. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MDJ (2000) A novel human opsin in the inner retina. J Neurosci 20(2):600–605. https://doi.org/10.1523/JNEUROSCI.20-02-00600.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Butler MP, Smales C, Wu H, Hussain MV, Mohamed YA, Morimoto M, Shea SA (2015) The circadian system contributes to apnea lengthening across the night in obstructive sleep apnea. Sleep 38(11):1793–1801. https://doi.org/10.5665/sleep.5166

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huseyinoglu N, Ekinci M, Ozben S, Buyukuysal C, Kale MY, Sanivar HS (2014) Optic disc and retinal nerve fiber layer parameters as indicators of neurodegenerative brain changes in patients with obstructive sleep apnea syndrome. Sleep Breath 18(1):95–102. https://doi.org/10.1007/s11325-013-0854-z

    Article  PubMed  Google Scholar 

  30. Fung SJ, Xi M, Zhang J, Sampogna S, Chase MH (2012) Apnea produces excitotoxic hippocampal synapses and neuronal apoptosis. Exp Neurol 238(2):107–113. https://doi.org/10.1016/j.expneurol.2012.08.006

    Article  PubMed  Google Scholar 

  31. Asanad S, Ross-Cisneros FN, Nassisi M, Barron E, Karanjia R, Sadun AA (2019) The retina in Alzheimer’s disease: histomorphometric analysis of an ophthalmologic biomarker. Invest Ophthalmol Vis Sci 60(5):1491–1500. https://doi.org/10.1167/iovs.18-25966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Borrelli E, Abdelfattah NS, Uji A, Nittala MG, Boyer DS, Sadda SR (2017) Postreceptor neuronal loss in intermediate age-related macular degeneration. Am J Ophthalmol 181:1–11. https://doi.org/10.1016/j.ajo.2017.06.005

    Article  PubMed  Google Scholar 

  33. Fındık H, Çeliker M, Aslan MG, Çeliker FB, İnecikli MF, Dursun E, Okutucu M, Şahin Ü (2019) The relation between retrobulbar blood flow and posterior ocular changes measured using spectral-domain optical coherence tomography in patients with obstructive sleep apnea syndrome. Int Ophthalmol 39(5):1013–1025. https://doi.org/10.1007/s10792-018-0892-4

    Article  PubMed  Google Scholar 

  34. Yu J, Xiao K, Huang J, Sun X, Jiang C (2017) Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 58(9):3506–3512. https://doi.org/10.1167/iovs.17-21414

    Article  PubMed  Google Scholar 

  35. Tonini M, Khayi H, Pepin J-L, Renard E, Baguet J-P, Lévy P, Romanet J-P, Geiser MH, Chiquet C (2010) Choroidal blood-flow responses to hyperoxia and hypercapnia in men with obstructive sleep apnea. Sleep 33(6):811–818. https://doi.org/10.1093/sleep/33.6.811

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SG, DK and OFB designed the study, collected the data, drafted the manuscript and created the tables.

Corresponding author

Correspondence to Soner Guven.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Ethics approval

Ethics approval for this study was obtained from Kayseri Erciyes University, Clinical Investigations Ethics Committee, 2020/132.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guven, S., Kilic, D. & Bolatturk, O.F. Thinning of the inner and outer retinal layers, including the ganglion cell layer and photoreceptor layers, in obstructive sleep apnea and hypopnea syndrome unrelated to the disease severity. Int Ophthalmol 41, 3559–3569 (2021). https://doi.org/10.1007/s10792-021-01937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01937-4

Keywords

Navigation