Skip to main content

Advertisement

Log in

Retinal and optic nerve evaluation by optical coherence tomography in adults with obstructive sleep apnea–hypopnea syndrome (OSAHS)

  • Miscellaneous
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Objective

To assess the peripapillary retinal nerve fiber layer (RNFL) thickness, optic nerve head (ONH) morphologic parameters, and macular thickness and volume in patients affected by obstructive sleep apnea–hypopnea syndrome (OSAHS).

Methods

This prospective, observational case-control study consisted of 96 eyes of 50 OSAHS patients (mean age of 50.9 ± 12.4 years, best-corrected visual acuity ≥20/20, refractive error less than 3 spherocylindrical diopters, and intraocular pressure <21 mmHg) who were enrolled and compared with 64 eyes of 33 age-matched controls. Peripapillary RNFL thickness, ONH parameters, macular thickness and volume were measured by optical coherence tomography (OCT).

Results

OSAHS patients showed a significant reduction of the nasal quadrant RNFL thickness (74.7 ± 15.8 μm) compared with those values observed in control patients (81.1 ± 16.6 μm, p = 0.047, Student's t-test). No differences in peripapillary RNFL thickness were observed when dividing the OSAHS group in accordance with disease severity. Vertical integrated rim area (VIRA) (0.67 ± 0.41 mm3 in OSAHS vs 0.55 ± 0.29 mm3 in controls; p = 0.043, Student's t-test), horizontal integrated rim width (HIRW) (1.87 ± 0.31 mm2 in OSAHS vs 1.8 ± 0.25 mm2 in controls; p = 0.039, Student's t-test) and disc area (2.74 ± 0.62 mm2 in OSAHS vs 2.48 ± 0.42 mm2 in controls; p = 0.002, Student's t-test) showed significant differences, all of them being higher in the OSAHS group. Severe OSAHS had significant higher disc area (2.8 ± 0.7 mm2) than controls (2.5 ± 0.4 mm2; p = 0.016, ANOVA test). Temporal inner macular thickness was significantly higher in mild–moderate OSAHS patients (270 ± 12 μm) than in severe OSAHS patients (260 ± 19 μm; p = 0.021, ANOVA test).

Conclusions

OSAHS patients showed decreased peripapillary nasal RNFL thickness, and increased ONH area and volume parameters when they were evaluated by OCT. These findings suggest that neuronal degeneration might be present in the retina of OSAHS patients, as previously observed in some neurodegenerative disorders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guilleminault C (1994) Clinical features and evaluation of obstructive sleep apnea syndrome. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. WB Saunders, Philadelphia, pp 667–677

    Google Scholar 

  2. Hatipoğlu U, Rubinstein I (2003) Inflammation and obstructive sleep apnea syndrome pathogenesis: a working hypothesis. Respiration 70:665–671

    Article  PubMed  Google Scholar 

  3. Leroux les Jardins G, Glacet-Bernard A, Lasry S, Housset B, Coscas G, Soubrane G (2009) Retinal vein occlusion and obstructive sleep apnea syndrome. J Fr Ophtalmol 32:420–424

    Article  PubMed  CAS  Google Scholar 

  4. Kloos P, Laube I, Thoelen A (2008) Obstructive sleep apnea in patients with central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 246:1225–1228

    Article  PubMed  Google Scholar 

  5. Jain AK, Kaines A, Schwartz S (2010) Bilateral central serous chorioretinopathy resolving rapidly with treatment for obstructive sleep apnea. Graefes Arch Clin Exp Ophthalmol 248:1037–1039

    Article  PubMed  Google Scholar 

  6. Purvin VA, Kawasaki A, Yee RD (2000) Papilledema and obstructive sleep apnea syndrome. Arch Ophthalmol 118:1626–1630

    PubMed  CAS  Google Scholar 

  7. Franklin KA (2002) Cerebral haemodynamics in obstructive sleep apnoea and Cheyne–Stokes respiration. Sleep Med Rev 6:429–441

    Article  PubMed  Google Scholar 

  8. Lee AG, Golnik K, Kardon R, Wall M, Eggenberger E, Yedavally S (2002) Sleep apnea and intracranial hypertension in men. Ophthalmology 109:482–485

    Article  PubMed  Google Scholar 

  9. O’Donoghue FJ, Briellmann RS, Rochford PD, Abbott DF, Pell GS, Chan CH, Tarquinio N, Jackson GD, Pierce RJ (2005) Cerebral structural changes in severe obstructive sleep apnea. Am J Respir Crit Care Med 171:1185–1190

    Article  PubMed  Google Scholar 

  10. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624

    PubMed  CAS  Google Scholar 

  11. Mojon DS, Hess CW, Goldblum D, Fleischhauer J, Koerner F, Bassetti C, Mathis J (1999) High prevalence of glaucoma in patients with sleep apnea syndrome. Ophthalmology 106:1009–1012

    Article  PubMed  CAS  Google Scholar 

  12. Mojon DS, Hess CW, Goldblum D, Böhnke M, Körner F, Mathis J (2000) Primary open-angle glaucoma is associated with sleep apnea syndrome. Ophthalmologica 214:115–118

    Article  PubMed  CAS  Google Scholar 

  13. Bendel RE, Kaplan J, Heckman M, Fredrickson PA, Lin SC (2008) Prevalence of glaucoma in patients with obstructive sleep apnoea—a cross-sectional case-series. Eye (Lond) 22:1105–1109

    Article  CAS  Google Scholar 

  14. Faridi O, Park SC, Liebmann JM, Ritch R (2012) Glaucoma and obstructive sleep apnoea syndrome. Clin Exp Ophthalmol 40:408–419

    Article  Google Scholar 

  15. Kargi SH, Altin R, Koksal M, Kart L, Cinar F, Ugurbas SH, Ayoglu F (2005) Retinal nerve fibre layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye (Lond) 19:575–579

    Article  CAS  Google Scholar 

  16. Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA, Harper RK, Yan-Go FL, Harper RM (2002) Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 166:1382–1387

    Article  PubMed  Google Scholar 

  17. Kumar R, Birrer BV, Macey PM, Woo MA, Gupta RK, Yan-Go FL, Harper RM (2008) Reduced mammillary body volume in patients with obstructive sleep apnea. Neurosci Lett 438:330–334

    Article  PubMed  CAS  Google Scholar 

  18. Jaffe G-J, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    Article  PubMed  Google Scholar 

  19. Hassenstein A, Spital G, Scholz F, Henschel A, Richard G, Pauleikhoff D (2009) Optical coherence tomography for macula diagnostics. Review of methods and standardized application concentrating on diagnostic and therapy control of age-related macula degeneration. Ophthalmologe 106:116–126

    Article  PubMed  CAS  Google Scholar 

  20. Lamirel C, Newman N, Biousse V (2009) The use of optical coherence tomography in neurology. Rev Neurol Dis 6:E105–E120

    PubMed  Google Scholar 

  21. Sergott RC, Frohman E, Glanzman R, Al-Sabbagh A (2007) The role of optical coherence tomography in multiple sclerosis: expert panel consensus. J Neurol Sci 263:3–14

    Article  PubMed  Google Scholar 

  22. Thrower BW (2007) Clinically isolated syndromes: predicting and delaying multiple sclerosis. Neurology 68:S12–S15

    Article  PubMed  Google Scholar 

  23. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867

    Article  PubMed  CAS  Google Scholar 

  24. Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289

    Article  PubMed  Google Scholar 

  25. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44:2793–2797

    Article  PubMed  Google Scholar 

  26. Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741

    Article  PubMed  Google Scholar 

  27. Ascaso FJ, Cabezón L, Quintanilla MA, Gutiérrez L, López-Antón R, Cristóbal JA, Lobo A (2010) Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: a short report. Eur J Psychiatr 24:227–235

    Google Scholar 

  28. Lin PW, Friedman M, Lin HC, Chang HW, Pulver TM, Chin CH (2011) Decreased retinal nerve fiber layer thickness in patients with obstructive sleep apnea/hypopnea syndrome. Graefes Arch Clin Exp Ophthalmol 249:585–593

    Article  PubMed  Google Scholar 

  29. Rechtschafen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. UCLA Brain Information Service, Brain Research Institute, Los Angeles

    Google Scholar 

  30. Villar I, Izuel M, Carrizo S, Vicente E, Marin JM (2009) Medication adherence and persistence in severe obstructive sleep apnea. Sleep 32:1–6

    Google Scholar 

  31. Shrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I (2012) Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012:728457

    PubMed  Google Scholar 

  32. Ederer F (1973) Shall we count numbers of eyes or numbers of subjects? Arch Ophthalmol 89:1–2

    Article  PubMed  CAS  Google Scholar 

  33. Bowd C, Zangwill LM, Blumenthal EZ, Vasile C, Boehm AG, Gokhale PA, Mohammadi K, Amini P, Sankary TM, Weinreb RN (2002) Imaging of the optic disc and retinal nerve fiber layer: effects of age, optic disc area, refractive error and gender. J Opt Soc Am A Opt Image Sci Vis 19:197–207

    Article  PubMed  Google Scholar 

  34. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053

    PubMed  Google Scholar 

  35. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, O’Connor GT, Boland LL, Schwartz JE, Samet JM (2001) Sleep-disordered breathing and cardiovascular disease: cross sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163:19–25

    Article  PubMed  CAS  Google Scholar 

  36. Rudnicka A, Pływaczewski R, Jończak L, Górecka D, Sliwiński P (2010) Prevalence of stroke in patients with obstructive sleep apnoea. Pneumonol Alergol Pol 78:121–125

    PubMed  Google Scholar 

  37. Tsang CS, Chong SL, Ho CK, Li MF (2006) Moderate to severe obstructive sleep apnoea in patients is associated with a higher incidence of visual field defect. Eye (Lond) 20:38–42

    Article  CAS  Google Scholar 

  38. Sebastian RT, Johns S, Gibson RA (2006) Treating obstructive sleep apnoea syndrome: does it improve visual field changes? Eye (Lond) 20:118–120

    Article  CAS  Google Scholar 

  39. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber layer atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  PubMed  CAS  Google Scholar 

  40. Gutiérrez-Díaz E, Pérez-Rico C, de Atauri MJ, Mencía-Gutiérrez E, Blanco R (2012) Evaluation of the visual function in obstructive sleep apnea syndrome patients and normal-tension glaucoma by means of the multifocal visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 250:1681–1688

    Article  PubMed  Google Scholar 

  41. Kergoat H, Hérard ME, Lemay M (2006) RGC sensitivity to mild systemic hypoxia. Invest Ophthalmol Vis Sci 47:5423–5427

    Article  PubMed  Google Scholar 

  42. Sohn S, Kim EY, Gwag BJ (1998) Glutamate neurotoxicity in mouse cortical neurons: atypical necrosis with DNA ladders and chromatin condensation. Neurosci Lett 240:1–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Casas.

Additional information

The authors confirm that they were fully involved in the study and preparation of the manuscript, and that the material within has not been and will not be submitted for publication elsewhere. The authors have full control of all primary data, and they agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review their data upon request. The authors have no financial interests in any aspect of this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, P., Ascaso, F.J., Vicente, E. et al. Retinal and optic nerve evaluation by optical coherence tomography in adults with obstructive sleep apnea–hypopnea syndrome (OSAHS). Graefes Arch Clin Exp Ophthalmol 251, 1625–1634 (2013). https://doi.org/10.1007/s00417-013-2268-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2268-9

Keywords

Navigation