Skip to main content

Advertisement

Log in

Ocular surgery after herpes simplex and herpes zoster keratitis

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The recurrence of herpetic stromal keratitis (HSK) and herpes zoster ophthalmicus (HZO) has been reported after a variety of ocular surgeries. The aim of this study was to review the evidence on the preventive methods employed in the perioperative period in patients having undergone HSK/HZO.

Methods

The PubMed and Web of Science databases were the main resources used to conduct the medical literature search. An extensive search was performed to identify relevant articles concerning the prophylaxis against and risk of HSK/HZO recurrence in patients undergoing ocular surgery up to December 31, 2019.

Results

The disturbance of the corneal nerve plexus occurs during several ocular surgeries including penetrating keratoplasty, lamellar keratoplasty, corneal cross-linking, cataract surgery, as well as photorefractive and phototherapeutic procedures. Such trauma, as well as modulation of the ocular immunological response caused by steroids applied postoperatively, might engender the HSK/HZO reactivation which is not uncommon. There is strong evidence that oral prophylaxis should be recommended just after surgery in patients undergoing penetrating keratoplasty and having suffered from HSK/HZO. For other types of surgeries, the evidence is less compelling; nevertheless, a period of disease quiescence and oral prophylaxis should still be considered.

Conclusions

Within the article, we discuss the available evidence for HSK/HZO prophylaxis in ocular surgery. Additional studies would be required to define the real risk of HSK/HZO recurrence following eye surgeries, and particularly cataract surgery, and to confirm the utility of perioperative HSK/HZO prophylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Search strategy included as “Appendix.”

References

  1. Smith JS, Robinson NJ (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186(Suppl 1):S3–S28

    PubMed  Google Scholar 

  2. Tsatsos M, MacGregor C, Athanasiadis I et al (2017) Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents—comment. Clin Exp Ophthalmol 45:932

    PubMed  Google Scholar 

  3. Dawson CR, Togni B (1976) Herpes simplex eye infections: clinical manifestations, pathogenesis and management. Surv Ophthalmol 21:121–135

    CAS  PubMed  Google Scholar 

  4. Cunningham AL, Diefenbach RJ, Miranda-Saksena M et al (2006) The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis 194(Suppl 1):S11–S18

    CAS  PubMed  Google Scholar 

  5. Ribarić V (1976) The incidence of herpetic keratitis among population. Ophthalmologica 173:19–22

    PubMed  Google Scholar 

  6. Liesegang TJ (1989) Epidemiology of ocular herpes simplex. Arch Ophthalmol 107:1155

    CAS  PubMed  Google Scholar 

  7. Labetoulle M, Auquier P, Conrad H et al (2005) Incidence of herpes simplex virus keratitis in France. Ophthalmology 112:888–895

    CAS  PubMed  Google Scholar 

  8. Shuster JJ, Kaufman HE, Nesburn AB (1981) Statistical analysis of the rate of recurrence of herpesvirus ocular epithelial disease. Am J Ophthalmol 91:328–331

    CAS  PubMed  Google Scholar 

  9. Barker NH (2008) Ocular herpes simplex. BMJ Clin Evid 2008:0707

    PubMed  PubMed Central  Google Scholar 

  10. Knickelbein JE, Hendricks RL, Charukamnoetkanok P (2009) Management of herpes simplex virus stromal keratitis: an evidence-based review. Surv Ophthalmol 54:226–234

    PubMed  Google Scholar 

  11. Azher TN, Yin X, Tajfirouz D, Huang AJH, Stuart PM (2017) Herpes simplex keratitis: challenges in diagnosis and clinical management. Clin Ophthalmol 11:185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Edell ARP, Cohen EJ (2013) Herpes simplex and herpes zoster eye disease. Eye Contact Lens 39:311–314

    PubMed  Google Scholar 

  13. Liesegang TJ (2008) Herpes zoster ophthalmicus natural history, risk factors, clinical presentation, and morbidity. Ophthalmology 115:S3–S12

    PubMed  Google Scholar 

  14. Barequet IS, Wasserzug Y (2007) Herpes simplex keratitis after cataract surgery. Cornea 26:615–617

    PubMed  Google Scholar 

  15. Patel NN, Teng CC, Sperber LTD, Dodick JM (2009) New-onset herpes simplex virus keratitis after cataract surgery. Cornea 28:108–110

    PubMed  Google Scholar 

  16. Levy J, Lapid-Gortzak R, Klemperer I, Lifshitz T (2005) Herpes simplex virus keratitis after laser in situ keratomileusis. J Refract Surg 21:400–402

    PubMed  Google Scholar 

  17. Cho YK, Kwon JW, Konda S, Ambati BK (2018) Epithelial keratitis after cataract surgery. Cornea 37:755–759

    PubMed  PubMed Central  Google Scholar 

  18. Zou M, Zhang Y, Huang X et al (2019) Epithelial keratitis mimicking herpes simplex keratitis in a patient after cataract surgery: a case report. Medicine 98:e16591

    PubMed  PubMed Central  Google Scholar 

  19. Ghosh S, Jhanji V, Lamoureux E et al (2008) Acyclovir therapy in prevention of recurrent herpetic keratitis following penetrating keratoplasty. Am J Ophthalmol 145:198–202

    CAS  PubMed  Google Scholar 

  20. Halberstadt M, Machens M, Gahlenbek K-A et al (2002) The outcome of corneal grafting in patients with stromal keratitis of herpetic and non-herpetic origin. Br J Ophthalmol 86:646–652

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodfellow JFB, Nabili S, Jones MNA et al (2011) Antiviral treatment following penetrating keratoplasty for herpetic keratitis. Eye 25:470–474

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ficker LA, Kirkness CM, Rice NS, Steele AD (1988) Longterm prognosis for corneal grafting in herpes simplex keratitis. Eye 2(Pt 4):400–408

    PubMed  Google Scholar 

  23. Barney NP, Foster CS (1994) A prospective randomized trial of oral acyclovir after penetrating keratoplasty for herpes simplex keratitis. Cornea 13:232–236

    CAS  PubMed  Google Scholar 

  24. Tambasco FP, Cohen EJ, Nguyen LH et al (1999) Oral acyclovir after penetrating keratoplasty for herpes simplex keratitis. Arch Ophthalmol 117:445

    CAS  PubMed  Google Scholar 

  25. Awan MA, Roberts F, Hegarty B, Ramaesh K (2010) The outcome of deep anterior lamellar keratoplasty in herpes simplex virus-related corneal scarring, complications and graft survival. Br J Ophthalmol 94:1300–1303

    CAS  PubMed  Google Scholar 

  26. Ogawa A, Yamaguchi T, Mitamura H et al (2016) Aetiology-specific comparison of long-term outcome of deep anterior lamellar keratoplasty for corneal diseases. Br J Ophthalmol 100:1176–1182

    PubMed  Google Scholar 

  27. Shimizu E, Yamaguchi T, Tomida D et al (2017) Corneal higher-order aberrations and visual improvement following corneal transplantation in treating herpes simplex keratitis. Am J Ophthalmol 184:1–10

    PubMed  Google Scholar 

  28. Wu S-Q, Zhou P, Zhang B et al (2012) Long-term comparison of full-bed deep lamellar keratoplasty with penetrating keratoplasty in treating corneal leucoma caused by herpes simplex keratitis. Am J Ophthalmol 153:291–299.e2

    PubMed  Google Scholar 

  29. Ren Y, Wang H, Zheng Q et al (2016) Long-term outcomes of deep anterior lamellar keratoplasty treating posterior stroma-implicated herpetic corneal opacities. Cornea 35:299–304

    PubMed  Google Scholar 

  30. Lyall DAM, Tarafdar S, Gilhooly MJ et al (2012) Long term visual outcomes, graft survival and complications of deep anterior lamellar keratoplasty in patients with herpes simplex related corneal scarring. Br J Ophthalmol 96:1200–1203

    PubMed  Google Scholar 

  31. Altay Y, Tamer S, Kaya AS et al (2017) The outcome of penetrating keratoplasty for corneal scarring due to herpes simplex keratitis. Arq Bras Oftalmol 80:41–45

    PubMed  Google Scholar 

  32. Lu LM, McGhee CNJ, Sims JL, Niederer RL (2019) High rate of recurrence of herpes zoster-related ocular disease after phacoemulsification cataract surgery. J Cataract Refract Surg 45:810–815

    PubMed  Google Scholar 

  33. He Y, de Melo Franco R, Kron-Gray MM et al (2015) Outcomes of cataract surgery in eyes with previous herpes zoster ophthalmicus. J Cataract Refract Surg 41:771–777

    PubMed  Google Scholar 

  34. Grzybowski A, Kanclerz P (2019) Do we need day-1 postoperative follow-up after cataract surgery? Graefes Arch Clin Exp Ophthalmol 257:855–861

    PubMed  Google Scholar 

  35. de Rojas Silva MV, Díez-Feijóo E, Javaloy J, Sánchez-Salorio M (2006) Prophylactic perioperative antiviral therapy for LASIK in patients with inactive herpetic keratitis. J Refract Surg 22:404–406

    PubMed  Google Scholar 

  36. Jarade EF, Tabbara KF (2001) Laser in situ keratomileusis in eyes with inactive herpetic keratitis. Am J Ophthalmol 132:779–780

    CAS  PubMed  Google Scholar 

  37. Grzybowski A, Kanclerz P (2020) Recent developments in cataract surgery. In: Grzybowski A (ed) Current concepts in ophthalmology. Springer, Cham, pp 55–97

    Google Scholar 

  38. (2014) Herpes simplex virus keratitis: a treatment guideline—2014. In: American Academy of Ophthalmology. https://www.aao.org/clinical-statement/herpes-simplex-virus-keratitis-treatment-guideline. Accessed 1 Sept 2019

  39. Bhatt UK, Abdul Karim MN, Prydal JI et al (2016) Oral antivirals for preventing recurrent herpes simplex keratitis in people with corneal grafts. Cochrane Database Syst Rev 11:CD007824

    PubMed  Google Scholar 

  40. Scottish Intercollegiate Guidelines Network. Annex B: key to evidence statements and grades of recommendations. In: SIGN 50: a guideline developer’s handbook. 2008 edition, revised 2011. Edinburgh, Scotland: Scottish Intercollegiate Guidelines Network. https://www.sign.ac.uk/assets/sign50_2011.pdf. Accessed 15 June 2020

  41. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926

    PubMed  PubMed Central  Google Scholar 

  42. van Rooij J, Rijneveld WJ, Remeijer L et al (2003) Effect of oral acyclovir after penetrating keratoplasty for herpetic keratitis: a placebo-controlled multicenter trial. Ophthalmology 110:1916–1919 discussion 1919

    PubMed  Google Scholar 

  43. Jansen AFG, Rijneveld WJ, Remeijer L et al (2009) Five-year follow-up on the effect of oral acyclovir after penetrating keratoplasty for herpetic keratitis. Cornea 28:843–845

    PubMed  Google Scholar 

  44. Liu X, Zhou Q, Huang X et al (2016) Clinical evaluation of deep anterior lamellar keratoplasty using glycerol-cryopreserved corneal tissues for refractory herpetic stromal keratitis: an observational study. Medicine 95:e4892

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leccisotti A (2009) Air-assisted manual deep anterior lamellar keratoplasty for treatment of herpetic corneal scars. Cornea 28:728–731

    PubMed  Google Scholar 

  46. Nguyen NX, Seitz B, Martus P et al (2007) Long-term topical steroid treatment improves graft survival following normal-risk penetrating keratoplasty. Am J Ophthalmol 144:318–319

    CAS  PubMed  Google Scholar 

  47. Hassan G, Khalaf H, Mourad W (2007) Dermatologic complications after liver transplantation: a single-center experience. Transplant Proc 39:1190–1194

    CAS  PubMed  Google Scholar 

  48. Sarnicola V, Toro P (2010) Deep anterior lamellar keratoplasty in herpes simplex corneal opacities. Cornea 29:60–64

    PubMed  Google Scholar 

  49. Feizi S, Azari AA (2020) Approaches toward enhancing survival probability following deep anterior lamellar keratoplasty. Ther Adv Ophthalmol 12:2515841420913014

    PubMed  PubMed Central  Google Scholar 

  50. Tanaka TS, Hood CT, Kriegel MF et al (2019) Long-term outcomes of penetrating keratoplasty for corneal complications of herpes zoster ophthalmicus. Br J Ophthalmol 103:1710–1715

    PubMed  Google Scholar 

  51. Li J, Ma H, Zhao Z et al (2014) Deep anterior lamellar keratoplasty using precut anterior lamellar cap for herpes simplex keratitis: a long-term follow-up study. Br J Ophthalmol 98:448–453

    PubMed  Google Scholar 

  52. Wang J, Zhao G, Xie L et al (2012) Therapeutic effect of deep anterior lamellar keratoplasty for active or quiescent herpetic stromal keratitis. Graefes Arch Clin Exp Ophthalmol 250:1187–1194

    PubMed  Google Scholar 

  53. Goldblum D, Bachmann C, Tappeiner C et al (2008) Comparison of oral antiviral therapy with valacyclovir or acyclovir after penetrating keratoplasty for herpetic keratitis. Br J Ophthalmol 92:1201–1205

    CAS  PubMed  Google Scholar 

  54. Garcia DD, Farjo Q, Musch DC, Sugar A (2007) Effect of prophylactic oral acyclovir after penetrating keratoplasty for herpes simplex keratitis. Cornea 26:930–934

    PubMed  Google Scholar 

  55. Akova YA, Onat M, Duman S (1999) Efficacy of low-dose and long-term oral acyclovir therapy after penetrating keratoplasty for herpes simplex keratitis. Ocul Immunol Inflamm 7:51–60

    CAS  PubMed  Google Scholar 

  56. Fagerholm P, Ohman L, Orndahl M (1994) Phototherapeutic keratectomy in herpes simplex keratitis. Clinical results in 20 patients. Acta Ophthalmol 72:457–460

    CAS  Google Scholar 

  57. Hung SO, Patterson A, Rees PJ (1984) Pharmacokinetics of oral acyclovir (Zovirax) in the eye. Br J Ophthalmol 68:192–195

    CAS  PubMed  PubMed Central  Google Scholar 

  58. De Clercq E, Descamps J, Verhelst G et al (1980) Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J Infect Dis 141:563–574

    PubMed  Google Scholar 

  59. Crumpacker CS, Schnipper LE, Zaia JA, Levin MJ (1979) Growth inhibition by acycloguanosine of herpesviruses isolated from human infections. Antimicrob Agents Chemother 15:642–645

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Katragadda S, Gunda S, Hariharan S, Mitra AK (2008) Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: evaluation of their utility in treating ocular HSV infections. Int J Pharm 359:15–24

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schulman J, Peyman GA, Fiscella R et al (1986) Intraocular acyclovir levels after subconjunctival and topical administration. Br J Ophthalmol 70:138–140

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Poirier RH, Kingham JD, de Miranda P, Annel M (1982) Intraocular antiviral penetration. Arch Ophthalmol 100:1964–1967

    CAS  PubMed  Google Scholar 

  63. Weaver DT, Isenberg SJ (1983) Intraocular antiviral penetration. Arch Ophthalmol 101:1146

    CAS  PubMed  Google Scholar 

  64. Gold D, Corey L (1987) Acyclovir prophylaxis for herpes simplex virus infection. Antimicrob Agents Chemother 31:361–367

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wilhelmus KR, Beck RW, Moke PS et al (1998) Acyclovir for the prevention of recurrent herpes simplex virus eye disease. Herpetic Eye Disease Study Group. N Engl J Med 339:300–306

    Google Scholar 

  66. Hoffman RS, Braga-Mele R, Donaldson K et al (2016) Cataract surgery and nonsteroidal antiinflammatory drugs. J Cataract Refract Surg 42:1368–1379

    PubMed  PubMed Central  Google Scholar 

  67. Grinde B (2013) Herpesviruses: latency and reactivation—viral strategies and host response. J Oral Microbiol 5:22766

    Google Scholar 

  68. Kobayashi M, Wilson AC, Chao MV, Mohr I (2012) Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev 26:1527–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Padgett DA, Sheridan JF, Dorne J et al (1998) Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci USA 95:7231–7235

    CAS  PubMed  Google Scholar 

  70. Rowe AM, St Leger AJ, Jeon S et al (2013) Herpes keratitis. Prog Retin Eye Res 32:88–101

    CAS  PubMed  Google Scholar 

  71. Herpetic Eye Disease Study Group (2001) Predictors of recurrent herpes simplex virus keratitis. Cornea 20:123–128

    Google Scholar 

  72. Al-Dujaili LJ, Clerkin PP, Clement C et al (2011) Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol 6:877–907

    PubMed  PubMed Central  Google Scholar 

  73. Malecaze F, Chollet P, Cavrois E et al (1991) Role of interleukin 6 in the inflammatory response after cataract surgery. An experimental and clinical study. Arch Ophthalmol 109:1681–1683

    CAS  PubMed  Google Scholar 

  74. Kriesel JD, Ricigliano J, Spruance S et al (1997) Neuronal reactivation of herpes simplex virus may involve interleukin-6. J Neurovirol 3:441–448

    CAS  PubMed  Google Scholar 

  75. Kriesel JD, Araneo B, Petajan JP et al (1994) Herpes labialis associated with recombinant human ciliary neurotrophic factor. J Infect Dis 170:1046

    CAS  PubMed  Google Scholar 

  76. Beyer CF, Hill JM, Reidy JJ, Beuerman RW (1990) Corneal nerve disruption reactivates virus in rabbits latently infected with HSV-1. Invest Ophthalmol Vis Sci 31:925–932

    CAS  PubMed  Google Scholar 

  77. Rosenthal P, Borsook D, Moulton EA (2016) Oculofacial pain: corneal nerve damage leading to pain beyond the eye. Invest Ophthalmol Vis Sci 57:5285–5287

    PubMed  PubMed Central  Google Scholar 

  78. Kanclerz P, Alio JL (2020) The benefits and drawbacks of femtosecond laser-assisted cataract surgery. Eur J Ophthalmol (in press). https://doi.org/10.1177/1120672120922448

    Article  PubMed  Google Scholar 

  79. Tal-Singer R, Lasner TM, Podrzucki W et al (1997) Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 71:5268–5276

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tal-Singer R, Podrzucki W, Lasner TM et al (1998) Use of differential display reverse transcription-PCR to reveal cellular changes during stimuli that result in herpes simplex virus type 1 reactivation from latency: upregulation of immediate-early cellular response genes TIS7, interferon, and interferon regulatory factor-1. J Virol 72:1252–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Toma HS, Murina AT, Areaux RG Jr et al (2008) Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 23:249–273

    PubMed  Google Scholar 

  82. Dhaliwal DK, Romanowski EG, Yates KA et al (2001) Experimental laser-assisted in situ keratomileusis induces the reactivation of latent herpes simplex virus. Am J Ophthalmol 131:506–507

    CAS  PubMed  Google Scholar 

  83. Dhaliwal DK, Barnhorst DA Jr, Romanowski E et al (1998) Efficient reactivation of latent herpes simplex virus type 1 infection by excimer laser keratectomy in the experimental rabbit ocular model. Am J Ophthalmol 125:488–492

    CAS  PubMed  Google Scholar 

  84. Pepose JS, Laycock KA, Miller JK et al (1992) Reactivation of latent herpes simplex virus by excimer laser photokeratectomy. Am J Ophthalmol 114:45–50

    CAS  PubMed  Google Scholar 

  85. Wilcox CL, Johnson EM Jr (1987) Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol 61:2311–2315

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sawtell NM, Thompson RL (1992) Rapid in vivo reactivation of herpes simplex virus in latently infected murine ganglionic neurons after transient hyperthermia. J Virol 66:2150–2156

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laycock KA, Lee SF, Brady RH, Pepose JS (1991) Characterization of a murine model of recurrent herpes simplex viral keratitis induced by ultraviolet B radiation. Invest Ophthalmol Vis Sci 32:2741–2746

    CAS  PubMed  Google Scholar 

  88. Brunsmann U, Sauer U, Arba-Mosquera S et al (2010) Evaluation of thermal load during laser corneal refractive surgery using infrared thermography. Infrared Phys Technol 53:342–347

    CAS  Google Scholar 

  89. De Ortueta D, Arba-Mosquera S, Magnago T (2019) High-speed recording of thermal load during laser trans-epithelial corneal refractive surgery using a 750 Hz ablation system. J Optom 12:84–91

    PubMed  Google Scholar 

  90. Bower KS, Edwards JD, Ryan DS et al (2010) Scattered ultraviolet emissions during refractive surgery using a high-frequency, wavefront-optimized excimer laser platform. J Cataract Refract Surg 36:1344–1348

    PubMed  Google Scholar 

  91. Grzybowski A, Kanclerz P, Huerva V, Ascaso FJ, Tuuminen R (2019) Diabetes and Phacoemulsification Cataract Surgery: Difficulties, Risks and Potential Complications. J Clin Med. 8(5):716

    CAS  PubMed Central  Google Scholar 

  92. Grzybowski A, Kanclerz P, Pleyer U (2017) Challenges with cataract surgery in pars planitis patients. Graefes Arch Clin Exp Ophthalmol. 255(8):1483–1484

    PubMed  PubMed Central  Google Scholar 

  93. Moschos MM, Bui M-A, Guex-Crosier Y (2004) Phacoemulsification with intraocular lens implantation in patients with uveitis. Klin Monbl Augenheilkd 221:324–327

    CAS  PubMed  Google Scholar 

  94. Simone JN, Whitacre MM (2001) Effects of anti-inflammatory drugs following cataract extraction. Curr Opin Ophthalmol 12:63–67

    CAS  PubMed  Google Scholar 

  95. Grzybowski A, Kanclerz P (2018) The role of steroids and NSAIDs in prevention and treatment of postsurgical cystoid macular edema. Curr Pharm Des 24:4896–4902

    CAS  PubMed  Google Scholar 

  96. Baker DA, Thomas J (1985) The effect of prostaglandin E2 on the initial immune response to herpes simplex virus infection. Am J Obstet Gynecol 151:586–590

    CAS  PubMed  Google Scholar 

  97. Trousdale MD, Barlow WE, McGuigan LJ (1989) Assessment of diclofenac on herpes keratitis in rabbit eyes. Arch Ophthalmol 107:1664–1666

    CAS  PubMed  Google Scholar 

  98. Kaufman HE, Varnell ED, Thompson HW (1999) Latanoprost increases the severity and recurrence of herpetic keratitis in the rabbit. Am J Ophthalmol 127:531–536

    CAS  PubMed  Google Scholar 

  99. Gebhardt BM, Varnell ED, Kaufman HE (2005) Inhibition of cyclooxygenase 2 synthesis suppresses Herpes simplex virus type 1 reactivation. J Ocul Pharmacol Ther 21:114–120

    CAS  PubMed  Google Scholar 

  100. Gebhardt BM, Varnell ED, Kaufman HE (2004) Acetylsalicylic acid reduces viral shedding induced by thermal stress. Curr Eye Res 29:119–125

    CAS  PubMed  Google Scholar 

  101. Qi X, Wang M, Li X et al (2018) Characteristics of new onset herpes simplex keratitis after keratoplasty. J Ophthalmol 2018:4351460

    PubMed  PubMed Central  Google Scholar 

  102. Halford WP, Gebhardt BM, Carr DJ (1996) Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70:5051–5060

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cook SD, Paveloff MJ, Doucet JJ et al (1991) Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcript mutants. Invest Ophthalmol Vis Sci 32:1558–1561

    CAS  PubMed  Google Scholar 

  104. Gronemeyer H (1992) Control of transcription activation by steroid hormone receptors. FASEB J 6:2524–2529

    CAS  PubMed  Google Scholar 

  105. Sheffy BE, Davies DH (1972) Reactivation of a bovine herpesvirus after corticosteroid treatment. Proc Soc Exp Biol Med 140:974–976

    CAS  PubMed  Google Scholar 

  106. Rock D, Lokensgard J, Lewis T, Kutish G (1992) Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. J Virol 66:2484–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lim H-Y, Müller N, Herold MJ et al (2007) Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 122:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng H, Tumpey TM, Staats HF et al (2000) Role of macrophages in restricting herpes simplex virus type 1 growth after ocular infection. Invest Ophthalmol Vis Sci 41:1402–1409

    CAS  PubMed  Google Scholar 

Download references

Funding

This study has been supported in part by the Red Temática de Investigación Cooperativa en Salud (RETICS), reference number RD16/0008/0012, financed by the Instituto Carlos III – General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2008-2011), and the European Regional Development Fund (Fondo Europeo de Desarrollo Regional FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Alio.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclosure.

Ethics approval

N/A.

Consent to participate

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Search strategy

Appendix: Search strategy

Literature searches of the PubMed and Web of Science databases were conducted on December 31, 2019; the search strategies are as follows. Specific limited update searches were conducted after December 31, 2019.

PubMed search (publication date 1/1/1900–12/31/2019)

((“herpes”[Title]) OR (“herpetic keratitis”[Title)) AND ((“cataract surgery”[Title]) OR (“cataract extraction”[Title]) OR (“phacoemulsification”[Title]) OR (“keratoplasty”[Title]) OR (“corneal refractive surgery”[Title]) OR (“laser in situ keratomileusis”[Title]) OR (“LASIK”[Title]) OR (“laser epithelial keratomileusis”[Title]) OR (“LASEK”[Title]) OR (“photorefractive keratectomy”[Title]) OR (“PRK”[Title]) OR (“small incision lenticule extraction”[Title]) OR (“SMILE”[Title])). 108 references.

Web of Science search (publication date 1/1/1900–12/31/2019)

(TI = (herpes) OR TI = (herpetic keratitis)) AND (TI = (cataract surgery) OR TI = (cataract extraction) OR TI = (phacoemulsification) OR TI = (keratoplasty) OR TI = (corneal refractive surgery) OR TI = (laser in situ keratomileusis) OR TI = (LASIK) OR TI = (laser epithelial keratomileusis) OR TI = (LASEK) OR TI = (photorefractive keratectomy) OR TI = (PRK) OR TI = (small incision lenticule extraction) OR TI = (SMILE)) Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan = All years. 112 references.

After removing duplicated 146 publications were analyzed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanclerz, P., Alio, J.L. Ocular surgery after herpes simplex and herpes zoster keratitis. Int Ophthalmol 40, 3599–3612 (2020). https://doi.org/10.1007/s10792-020-01539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01539-6

Keywords

Navigation