Skip to main content

Advertisement

Log in

Characteristics of genotype and phenotype in Chinese patients with Bardet–Biedl syndrome

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate complex and different phenotypes in seven Chinese patients diagnosed with Bardet–Biedl syndrome (BBS) and carrying pathogenic mutations.

Methods

Seven unrelated BBS patients were enrolled. Their medical and ophthalmic histories were reviewed, and comprehensive clinical examinations, such as fundus photography, optical coherence tomography, and medical imaging, were performed. A specific hereditary eye disease enrichment panel based on exome-capture technology was used to collect and amplify the protein-coding regions of 441 targeted hereditary eye disease genes, followed by high-throughput sequencing using the Illumina HiSeq platform.

Results

All patients exhibited the primary clinical phenotype of BBS. Seven BBS mutations were found in five patients (BBS7 in two patients, BBS10 in two patients, BBS12 in one patient), for a detection rate of 71% (5/7). The ratio of novel to known BBS mutations was 5:2.

Conclusions

This study showed the phenotypic and genotypic spectrum of BBS patients from China, and the findings underscore the importance of obtaining comprehensive clinical observations and molecular analyses for ciliopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suspitsin EN, Imyanitov EN (2016) Bardet–Biedl syndrome. Mol Syndromol 7:62–71

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Beales PL, Warner AM, Hitman GA et al (1997) Bardet–Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 34:92–98

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Priya S, Nampoothiri S, Sen P et al (2016) Bardet–Biedl syndrome: genetics, molecular pathophysiology, and disease management. Indian J Ophthalmol 64:620–627

    PubMed  PubMed Central  Google Scholar 

  4. Heon E, Kim G, Qin S et al (2016) Mutations in C8ORF37 cause Bardet–Biedl syndrome (BBS21). Hum Mol Genet 25:2283–2294

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schaefer E, Stoetzel C, Scheidecker S et al (2016) Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet–Biedl syndrome. J Hum Genet 61:447–450

    PubMed  Google Scholar 

  6. Forsythe E, Beales PL (2013) Bardet–Biedl syndrome. Eur J Hum Genet 21:8–13

    CAS  PubMed  Google Scholar 

  7. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056

    PubMed  PubMed Central  Google Scholar 

  8. Wheway G, Nazlamova L, Hancock JT (2018) Signaling through the primary cilium. Front Cell Dev Biol 6:8

    PubMed  PubMed Central  Google Scholar 

  9. Beales PL, Elcioglu N, Woolf AS et al (1999) New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 36:437–446

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ullah A, Khalid M, Umair M et al (2018) Novel sequence variants in the MKKS gene cause Bardet–Biedl syndrome with intra- and inter-familial variable phenotypes. Congenit Anom (Kyoto) 58:173–175

    Google Scholar 

  11. González-Del Pozo M, Méndez-Vidal C, Santoyo-Lopez J et al (2014) Deciphering intrafamilial phenotypic variability by exome sequencing in a Bardet–Biedl family. Mol Genet Genom Med 2:124–133

    Google Scholar 

  12. Moore SJ, Green JS, Fan Y et al (2005) Clinical and genetic epidemiology of Bardet–Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A 132A:352–360

    PubMed  PubMed Central  Google Scholar 

  13. Denniston AK, Beales PL, Tomlins PJ et al (2014) Evaluation of visual function and needs in adult patients with Bardet–Biedl syndrome. Retina 34:2282–2289

    PubMed  Google Scholar 

  14. Fulton AB, Hansen RM, Glynn RJ (1993) Natural course of visual functions in the Bardet–Biedl syndrome. Arch Ophthalmol 111:1500–1506

    CAS  PubMed  Google Scholar 

  15. Cox GF, Hansen RM, Quinn N et al (2003) Retinal function in carriers of Bardet–Biedl syndrome. Arch Ophthalmol 121:804–810

    PubMed  Google Scholar 

  16. Kim LS, Fishman GA, Seiple WH et al (2007) Retinal dysfunction in carriers of Bardet–Biedl syndrome. Ophthalmic Genet 28:163–168

    PubMed  Google Scholar 

  17. Berezovsky A, Rocha DM, Sacai PY et al (2012) Visual acuity and retinal function in patients with Bardet–Biedl syndrome. Clinics 67:145–149

    PubMed  PubMed Central  Google Scholar 

  18. Azari AA, Aleman TS, Cideciyan AV et al (2006) Retinal disease expression in Bardet–Biedl syndrome-1 (BBS1) is a spectrum from maculopathy to retina-wide degeneration. Invest Ophthalmol Vis Sci 47:5004–5010

    PubMed  Google Scholar 

  19. Riise R, Tornqvist K, Wright AF et al (2002) The phenotype in Norwegian patients with Bardet–Biedl syndrome with mutations in the BBS4 gene. Arch Ophthalmol 120:1364–1367

    PubMed  Google Scholar 

  20. Spaggiari E, Salati R, Nicolini P et al (1999) Evolution of ocular clinical and electrophysiological findings in pediatric Bardet–Biedl syndrome. Int Ophthalmol 23:61–67

    CAS  PubMed  Google Scholar 

  21. Billingsley G, Bin J, Fieggen KJ et al (2010) Mutations in chaperonin-like BBS genes are a major contributor to disease development in a multiethnic Bardet–Biedl syndrome patient population. J Med Genet 47:453–463

    CAS  PubMed  Google Scholar 

  22. Deveault C, Billingsley G, Duncan JL et al (2011) BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat 32:610–619

    CAS  PubMed  Google Scholar 

  23. Castrosánchez S, ÁlvarezSatta M, Cortón M et al (2015) Exploring genotype-phenotype relationships in Bardet–Biedl syndrome families. J Med Genet 52:503–513

    Google Scholar 

  24. Cox KF, Kerr NC, Kedrov M et al (2012) Phenotypic expression of Bardet–Biedl syndrome in patients homozygous for the common M390R mutation in the BBS1 gene. Vis Res 75:77–87

    CAS  PubMed  Google Scholar 

  25. Estrada-Cuzcano A, Koenekoop RK, Senechal A et al (2012) BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet–Biedl syndrome. Arch Ophthalmol 130:1425–1432

    CAS  PubMed  Google Scholar 

  26. Daniels AB, Sandberg MA, Chen J et al (2012) Genotype-phenotype correlations in Bardet–Biedl syndrome. Arch Ophthalmol 130:901–907

    PubMed  Google Scholar 

  27. Yang L, Cui H, Yin X et al (2015) Dependable and efficient clinical molecular diagnosis of chinese rp patient with targeted exon sequencing. PLoS ONE 10:e0140684

    PubMed  PubMed Central  Google Scholar 

  28. Yin X, Yang L, Chen N et al (2016) Identification of CYP4V2, mutation in 36 Chinese families with Bietti crystalline corneoretinal dystrophy. Exp Eye Res 146:154–162

    CAS  PubMed  Google Scholar 

  29. Zhang J, Wang C, Shen Y et al (2016) A mutation in ADIPOR1 causes nonsyndromic autosomal dominant retinitis pigmentosa. Hum Genet 135:1375–1387

    CAS  PubMed  Google Scholar 

  30. Chen X, Zhao K, Sheng X et al (2013) Targeted sequencing of 179 genes associated with hereditary retinal dystrophies and 10 candidate genes identifies novel and known mutations in patients with various retinal diseases. Invest Ophthalmol Vis Sci 54:2186–2197

    PubMed  Google Scholar 

  31. Janssen S, Ramaswami G, Davis EE et al (2011) Mutation analysis in Bardet–Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals. Hum Genet 129:79–90

    CAS  PubMed  Google Scholar 

  32. Zhou Y, Tao S, Chen H et al (2014) Exome sequencing analysis identifies compound heterozygous mutation in ABCA4 in a Chinese family with Stargardt disease. PLoS ONE 9:e91962

    PubMed  PubMed Central  Google Scholar 

  33. Qi Z, Shen Y, Fu Q et al (2017) Whole-exome sequencing identified compound heterozygous variants in MMKS in a Chinese pedigree with Bardet–Biedl syndrome. Sci China Life Sci 60:739–745

    CAS  PubMed  Google Scholar 

  34. Shen T, Shou T, Lin KQ et al (2011) Establishment of B lymphoblastoid cell lines of Miao pedigree with Bardet–Biedl syndrome. Chin J Med Genet 28:33–36

    Google Scholar 

  35. Shen T, Gao JM, Shou T et al (2019) Identification of a homozygous BBS7 frameshift mutation in two (related) Chinese Miao families with Bardet–Biedl Syndrome. J Chin Med Assoc 82:110–114

    PubMed  Google Scholar 

  36. Khan SA, Muhammad N, Khan MA et al (2016) Genetics of human Bardet–Biedl syndrome, an updates. Clin Genet 90:3–15

    CAS  PubMed  Google Scholar 

  37. Klink BU, Zent E, Juneja P et al (2017) A recombinant BBSome core complex and how it interacts with ciliary cargo. Elife 6:e27434

    PubMed  PubMed Central  Google Scholar 

  38. Blacque OE, Reardon MJ, Li C et al (2004) Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 18:1630–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Q, Nishimura D, Vogel T et al (2013) BBS7 is required for BBSome formation and its absence in mice results in Bardet–Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking. J Cell Sci 126:2372–2380

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Q, Yu D, Seo S et al (2012) Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet–Biedl syndrome protein complex, the BBSome. J Biol Chem 287:20625–20635

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohto T, Enokizono T, Tanaka R et al (2017) A novel BBS10 mutation identified in a patient with Bardet–Biedl syndrome with a violent emotional outbreak. Hum Genome Var 4:17033

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cognard N, Scerbo MJ, Obringer C et al (2015) Comparing the Bbs10 complete knockout phenotype with a specific renal epithelial knockout one highlights the link between renal defects and systemic inactivation in mice. Cilia 4:1–12

    Google Scholar 

  43. ÁlvarezSatta M, Castrosánchez S, Pereiro I et al (2014) Overview of Bardet–Biedl syndrome in Spain: identification of novel mutations in BBS1, BBS10 and BBS12 genes. Clin Genet 86:601–602

    Google Scholar 

  44. Seo S, Baye LM, Schulz NP et al (2010) BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sciences USA 107:1488–1493

    CAS  Google Scholar 

  45. Álvarez-Satta M, Castro-Sánchez S, Valverde D (2017) Bardet–Biedl syndrome as a chaperonopathy: dissecting the major role of chaperonin-like BBS proteins (BBS6-BBS10-BBS12). Front Mol Biosci 4:55

    PubMed  PubMed Central  Google Scholar 

  46. Shin SJ, Kim M, Chae H et al (2015) Identification of compound heterozygous mutations in the BBS7 gene in a Korean family with Bardet–Biedl syndrome. Ann Lab Med 35:181–184

    CAS  PubMed  Google Scholar 

  47. Billingsley G, Deveault C, Héon E (2011) BBS mutational analysis: a strategic approach. Ophthalmic Genet 32:181–187

    CAS  PubMed  Google Scholar 

  48. Molday RS (2015) Insights into the molecular properties of ABCA4 and its role in the visual cycle and stargardt disease. Prog Mol Biol Transl Sci 134:415–431

    CAS  PubMed  Google Scholar 

  49. Sabirzhanova I, Lopes PM, Rapino D et al (2015) Rescuing trafficking mutants of the ATP-binding cassette protein, ABCA4, with small molecule correctors as a treatment for stargardt eye disease. J Biol Chem 290:19743–19755

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Westerfeld C, Mukai S (2008) Stargardt’s disease and the ABCR gene. Semin Ophthalmol 23:59–65

    PubMed  Google Scholar 

  51. Molday RS, Zhong M, Quazi F (2009) The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta 1791:573–583

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Natural Science Foundation of China (No. 81271046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genlin Li.

Ethics declarations

Conflict of interest

The author declares that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, T., Wang, L., Chong, W. et al. Characteristics of genotype and phenotype in Chinese patients with Bardet–Biedl syndrome. Int Ophthalmol 40, 2325–2343 (2020). https://doi.org/10.1007/s10792-020-01415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01415-3

Keywords

Navigation