Skip to main content

Advertisement

Log in

The influence of corneal geometrical and biomechanical properties on tonometry readings in keratoconic eyes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To identify the effect of corneal geometrical and biomechanical parameters on the intraocular pressure (IOP) measurements obtained by Goldmann Applanation Tonometer (GAT), non-contact tonometer, iCare Pro Rebound Tonometer (IRT), Tonopen and Ocular Response Analyzer (ORA, Goldmann-correlated IOP: IOPg, corneal compensated IOP: IOPcc).

Methods

We prospectively recruited patients with a tomographically confirmed diagnosis of keratoconus. IOP measurements were performed in the following order: non-contact tonometry, ORA, IRT, GAT and Tonopen. The means of the three IOP measurements were used for the analysis. Correlation analyses were performed to assess the association between tonometer readings and the corneal geometrical and biomechanical parameters including ORA waveform parameters. Tonometer variability was assessed using a stepwise linear regression analysis.

Results

Fifty-one patients with keratoconus (27 females, mean age 30.8 ± 8.7 years) were evaluated. The highest mean IOP was measured by IOPcc (14.6 ± 2.3 mmHg) followed by IRT IOP (13.0 ± 3.2 mmHg), Tonopen IOP 12.0 ± 2.6 mmHg), GAT IOP (11.7 ± 3.1 mmHg), NCT IOP (10.2 ± 3.2 mmHg) and IOPg (10.2 ± 3.6 mmHg). NCT and IOPg were affected from all corneal parameters including thickness, curvature and biomechanical parameters. While GAT and IRT had significant correlations with corneal resistance factor (CRF) and corneal hysteresis, IOPcc only had a significant correlation with CRF. None of the corneal factors had any statistically significant correlation with Tonopen. CRF predicted tonometer measurement variability in 7 of the 15 inter-device variability assessments.

Conclusion

Tonopen was the least affected from the corneal parameters followed by IOPcc and GAT. CRF was a strong determinant of tonometer variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42(4):297–319

    Article  CAS  Google Scholar 

  2. McMonnies CW, Boneham GC (2010) Corneal responses to intraocular pressure elevations in keratoconus. Cornea 29(7):764–770. https://doi.org/10.1097/ICO.0b013e3181ca2b75

    Article  PubMed  Google Scholar 

  3. Bohm A, Kohlhaas M, Lerche RC, Bischoff B, Richard G (1997) Measuring intraocular pressure in keratoconus: effect of the changed biomechanics. Ophthalmologe 94(11):771–774

    Article  CAS  Google Scholar 

  4. Brooks AM, Robertson IF, Mahoney AM (1984) Ocular rigidity and intraocular pressure in keratoconus. Aust J Ophthalmol 12(4):317–324

    Article  CAS  Google Scholar 

  5. Patel S, McLaughlin JM (1999) Effects of central corneal thickness on measurement of intra-ocular pressure in keratoconus and post-keratoplasty. Ophthalmic Physiol Opt 19(3):236–241

    Article  CAS  Google Scholar 

  6. Cohen EJ (2009) Keratoconus and normal-tension glaucoma: a study of the possible association with abnormal biomechanical properties as measured by corneal hysteresis (An AOS Thesis). Trans Am Ophthalmol Soc 107:282–299

    PubMed  PubMed Central  Google Scholar 

  7. Roberts CJ, Dupps WJ Jr (2014) Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg 40(6):991–998. https://doi.org/10.1016/j.jcrs.2014.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scarcelli G, Besner S, Pineda R, Yun SH (2014) Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 55(7):4490–4495. https://doi.org/10.1167/iovs.14-14450

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scarcelli G, Besner S, Pineda R, Kalout P, Yun SH (2015) In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol 133(4):480–482. https://doi.org/10.1001/jamaophthalmol.2014.5641

    Article  PubMed  PubMed Central  Google Scholar 

  10. Firat PG, Orman G, Doganay S, Demirel S (2013) Influence of corneal parameters in keratoconus on IOP readings obtained with different tonometers. Clin Exp Optom 96(2):233–237. https://doi.org/10.1111/cxo.12016

    Article  PubMed  Google Scholar 

  11. Goldich Y, Barkana Y, Avni I, Zadok D (2010) Goldmann applanation tonometry versus ocular response analyzer for intraocular pressure measurements in keratoconic eyes. Cornea 29(9):1011–1015. https://doi.org/10.1097/ICO.0b013e3181cda034

    Article  PubMed  Google Scholar 

  12. Unterlauft JD, Schadle N, Kasper K, Klink T, Geerling G (2011) Comparison of dynamic contour tonometry and Goldmann applanation tonometry in keratoconus. Cornea 30(10):1078–1082. https://doi.org/10.1097/ICO.0b013e31820cd3d6

    Article  PubMed  Google Scholar 

  13. Hager A, Loge K, Schroeder B, Fullhas MO, Wiegand W (2008) Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dynamic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes. J Glaucoma 17(5):361–365. https://doi.org/10.1097/IJG.0b013e31815c3ad3

    Article  PubMed  Google Scholar 

  14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300

    Google Scholar 

  15. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  16. Cohen J (1988) Statistical power analysis for the behavioral sciences. In: 2nd edn. Lawrence Erlbaum, Hillsdale, NJ, p 80

  17. Browning AC, Bhan A, Rotchford AP, Shah S, Dua HS (2004) The effect of corneal thickness on intraocular pressure measurement in patients with corneal pathology. Br J Ophthalmol 88(11):1395–1399. https://doi.org/10.1136/bjo.2003.037887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyenberg A, Iliev ME, Eschmann R, Frueh BE (2008) Dynamic contour tonometry in keratoconus and postkeratoplasty eyes. Cornea 27(3):305–310. https://doi.org/10.1097/ICO.0b013e31815dcf97

    Article  PubMed  Google Scholar 

  19. Ozbek Z, Cohen EJ, Hammersmith KM, Rapuano CJ (2006) Dynamic contour tonometry: a new way to assess intraocular pressure in ectatic corneas. Cornea 25(8):890–894. https://doi.org/10.1097/01.ico.0000224649.12214.33

    Article  PubMed  Google Scholar 

  20. Altinkaynak H, Kocasarac C, Dundar H, Sayin N, Kara N, Bozkurt E, Duru N (2016) Which tonometry in eyes with keratoconus? Eye (Lond) 30(3):431–437. https://doi.org/10.1038/eye.2015.248

    Article  CAS  Google Scholar 

  21. Papastergiou GI, Kozobolis V, Siganos DS (2008) Assessment of the pascal dynamic contour tonometer in measuring intraocular pressure in keratoconic eyes. J Glaucoma 17(6):484–488. https://doi.org/10.1097/IJG.0b013e3181622502

    Article  PubMed  Google Scholar 

  22. Mendez-Hernandez C, Arribas-Pardo P, Cuina-Sardina R, Fernandez-Perez C, Mendez-Fernandez R, Saenz-Frances F, Benitez-Del-Castillo JM, Garcia-Feijoo J (2017) Measuring intraocular pressure in patients with keratoconus with and without intrastromal corneal ring segments. J Glaucoma 26(1):71–76. https://doi.org/10.1097/IJG.0000000000000549

    Article  PubMed  Google Scholar 

  23. Cairns R, Graham K, O’Gallagher M, Jackson AJ (2018) Intraocular pressure (IOP) measurements in keratoconic patients: do variations in IOP respect variations in corneal thickness and corneal curvature? Cont Lens Anterior Eye. https://doi.org/10.1016/j.clae.2018.11.007

    Article  PubMed  Google Scholar 

  24. Read SA, Collins MJ (2011) Intraocular pressure in keratoconus. Acta Ophthalmol 89(4):358–364. https://doi.org/10.1111/j.1755-3768.2009.01690.x

    Article  PubMed  Google Scholar 

  25. Bayer A, Sahin A, Hurmeric V, Ozge G (2010) Intraocular pressure values obtained by ocular response analyzer, dynamic contour tonometry, and Goldmann tonometry in keratokonic corneas. J Glaucoma 19(8):540–545. https://doi.org/10.1097/IJG.0b013e3181ca7aeb

    Article  PubMed  Google Scholar 

  26. Mollan SP, Wolffsohn JS, Nessim M, Laiquzzaman M, Sivakumar S, Hartley S, Shah S (2008) Accuracy of Goldmann, ocular response analyser, Pascal and TonoPen XL tonometry in keratoconic and normal eyes. Br J Ophthalmol 92(12):1661–1665. https://doi.org/10.1136/bjo.2007.136473

    Article  CAS  PubMed  Google Scholar 

  27. Touboul D, Roberts C, Kerautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J (2008) Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg 34(4):616–622. https://doi.org/10.1016/j.jcrs.2007.11.051

    Article  PubMed  Google Scholar 

  28. Ozcura F, Yildirim N, Tambova E, Sahin A (2017) Evaluation of Goldmann applanation tonometry, rebound tonometry and dynamic contour tonometry in keratoconus. J Optom 10(2):117–122. https://doi.org/10.1016/j.optom.2016.04.005

    Article  PubMed  Google Scholar 

  29. Smedowski A, Weglarz B, Tarnawska D, Kaarniranta K, Wylegala E (2014) Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Invest Ophthalmol Vis Sci 55(2):666–673. https://doi.org/10.1167/iovs.13-13172

    Article  PubMed  Google Scholar 

  30. Jorge JM, Gonzalez-Meijome JM, Queiros A, Fernandes P, Parafita MA (2008) Correlations between corneal biomechanical properties measured with the ocular response analyzer and ICare rebound tonometry. J Glaucoma 17(6):442–448. https://doi.org/10.1097/IJG.0b013e31815f52b8

    Article  PubMed  Google Scholar 

  31. Chui WS, Lam A, Chen D, Chiu R (2008) The influence of corneal properties on rebound tonometry. Ophthalmology 115(1):80–84. https://doi.org/10.1016/j.ophtha.2007.03.061

    Article  PubMed  Google Scholar 

  32. Rosentreter A, Athanasopoulos A, Schild AM, Lappas A, Cursiefen C, Dietlein TS (2013) Rebound, applanation, and dynamic contour tonometry in pathologic corneas. Cornea 32(3):313–318. https://doi.org/10.1097/ICO.0b013e318254a3fb

    Article  PubMed  Google Scholar 

  33. Mikielewicz M, Kotliar K, Barraquer RI, Michael R (2011) Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol 95(6):793–798. https://doi.org/10.1136/bjo.2010.188300

    Article  PubMed  Google Scholar 

  34. Schweitzer C, Roberts CJ, Mahmoud AM, Colin J, Maurice-Tison S, Kerautret J (2010) Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci 51(5):2403–2410. https://doi.org/10.1167/iovs.09-3689

    Article  PubMed  Google Scholar 

  35. De Stefano VS, Dupps WJ Jr (2017) Biomechanical diagnostics of the cornea. Int Ophthalmol Clin 57(3):75–86. https://doi.org/10.1097/IIO.0000000000000172

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gkika MG, Labiris G, Kozobolis VP (2012) Tonometry in keratoconic eyes before and after riboflavin/UVA corneal collagen crosslinking using three different tonometers. Eur J Ophthalmol 22(2):142–152. https://doi.org/10.5301/EJO.2011.8328

    Article  PubMed  Google Scholar 

  37. Luz A, Lopes B, Hallahan KM, Valbon B, Ramos I, Faria-Correia F, Schor P, Dupps WJ Jr, Ambrosio R Jr (2016) Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg 32(7):479–494. https://doi.org/10.3928/1081597X-20160502-02

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wolffsohn JS, Safeen S, Shah S, Laiquzzaman M (2012) Changes of corneal biomechanics with keratoconus. Cornea 31(8):849–854. https://doi.org/10.1097/ICO.0b013e318243e42d

    Article  PubMed  Google Scholar 

  39. Mark HH, Mark TL (2003) Corneal astigmatism in applanation tonometry. Eye (Lond) 17(5):617–618. https://doi.org/10.1038/sj.eye.6700417

    Article  CAS  Google Scholar 

  40. Mok KH, Wong CS, Lee VW (1999) Tono-Pen tonometer and corneal thickness. Eye (Lond) 13(Pt 1):35–37. https://doi.org/10.1038/eye.1999.7

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. Onur Özalp and Serdar İlgüy for their help in IOP measurements.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eray Atalay.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This cross-sectional study was approved by the Clinical Research Ethical Board of the Eskisehir Osmangazi University and was conducted in adherence to the tenets of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgeç, M.D., Atalay, E., Sözer, Ö. et al. The influence of corneal geometrical and biomechanical properties on tonometry readings in keratoconic eyes. Int Ophthalmol 40, 849–857 (2020). https://doi.org/10.1007/s10792-019-01248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01248-9

Keywords

Navigation