Skip to main content

Advertisement

Log in

Hydrogen peroxide-induced cellular apoptosis is mediated by TGF-β2 signaling pathway in cultured human lens epithelial cells

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the signaling characteristics of transforming growth factor-β2 (TGF-β2) and the Smads (Caenorhabditis elegans, Sma; Drosophila mothers against dpp, Mad) signal pathway of cellular apoptosis induced by hydrogen peroxide with human lens epithelial cells (HLECs). HLECs were starved for 24 h before exposure to 0.1 μmol/ml of hydrogen peroxide in the presence and in the absence of 0.01 μg/ml of AF-302-NA, a monoclonal anti-TGF-β2 neutralization antibody. Non-stimulated cells served as controls. Cell apoptosis was examined by in situ immunocytochemistry using terminal deoxynucleotidyl transferase dUTP-mediated biotin nick end labeling (TUNEL) and by flow cytometry (FCM) using Annexin V-FITC apoptosis detection. Gene expression was assessed using the reverse transcription-polymerase chain reaction (RT-PCR). Smad-4 localization was observed by immunocytochemistry. Hydrogen peroxide induced the accumulation of Smad-4 in the nucleus of HLECs, and upregulated the expression of TGF-β receptors (TβRs) mRNA in HLECs, as well as upregulated the expression of the apoptotic gene bax, which leads HLECs to apoptosis. AF-302-NA decreased cellular apoptosis induced by hydrogen peroxide in HLECs and inhibited the translocation of Smad-4 from the cytoplasm to the cell nucleus. Moreover, AF-302-NA upregulated the expression of TβRs mRNA and downregulated the expression of bax mRNA in HLECs incubated with hydrogen peroxide. Our study demonstrated that the TGF-β2 signal pathway participated in the apoptotic signal transfer and might be an initiator of cellular apoptosis of HLECs after incubation with hydrogen peroxide. Interruption of the TGF-β2 signal pathway could partially protect HLECs from apoptosis induced by incubation with hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hightower KR, Reddan JR, McCready JP, Dziedzic DC (1994) Lens epithelium: a primary target of uvb irradiation. Exp Eye Res 59:557–564. doi:10.1006/exer.1994.1141

    Article  CAS  PubMed  Google Scholar 

  2. Heckenlively JR, Aptsiauri N, Nusinowitz S, Peng C, Hargrave PA (1996) Investigations of antiretinal antibodies in pigmentary retinopathy and other retinal degenerations. Trans Am Ophthalmol Soc 94:179–200 Discussion 20-176

    CAS  PubMed  Google Scholar 

  3. Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9:1173–1182

    CAS  PubMed  Google Scholar 

  4. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  5. Lou MF (2000) Thiol regulation in the lens. J Ocul Pharmacol Ther 16:137–148. doi:10.1089/jop.2000.16.137

    Article  CAS  PubMed  Google Scholar 

  6. Mansfield KJ, Cerra A, Chamberlain CG (2004) Fgf-2 counteracts loss of tgf-beta affected cells from rat lens explants: implications for pco (after cataract). Mol Vis 10:521–532

    CAS  PubMed  Google Scholar 

  7. Maruno KA, Lovicu FJ, Chamberlain CG, McAvoy JW (2002) Apoptosis is a feature of tgf beta-induced cataract. Clin Exp Optom 85:76–82

    Article  PubMed  Google Scholar 

  8. Lee JH, Wan XH, Song J, Kang JJ, Chung WS, Lee EH, Kim EK (2002) Tgf-beta-induced apoptosis and reduction of bcl-2 in human lens epithelial cells in vitro. Curr Eye Res 25:147–153. doi:10.1076/ceyr.25.3.147.13475

    Article  PubMed  Google Scholar 

  9. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in tgf-beta signal transduction. J Cell Sci 114:4359–4369

    CAS  PubMed  Google Scholar 

  10. Wormstone IM, Tamiya S, Eldred JA, Lazaridis K, Chantry A, Reddan JR, Anderson I, Duncan G (2004) Characterisation of tgf-beta2 signalling and function in a human lens cell line. Exp Eye Res 78:705–714. doi:10.1016/j.exer.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  11. Lee EH, Joo CK (1999) Role of transforming growth factor-beta in transdifferentiation and fibrosis of lens epithelial cells. Invest Ophthalmol Vis Sci 40:2025–2032

    CAS  PubMed  Google Scholar 

  12. Wormstone IM (2002) Posterior capsule opacification: a cell biological perspective. Exp Eye Res 74:337–347. doi:10.1006/exer.2001.1153

    Article  PubMed  Google Scholar 

  13. Schlotzer-Schrehardt U, Zenkel M, Kuchle M, Sakai LY, Naumann GO (2001) Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res 73:765–780. doi:10.1006/exer.2001.1084

    Article  CAS  PubMed  Google Scholar 

  14. Ushiyama O, Ushiyama K, Koarada S, Tada Y, Suzuki N, Ohta A, Oono S, Nagasawa K (2000) Retinal disease in patients with systemic lupus erythematosus. Ann Rheum Dis 59:705–708. doi:10.1136/ard.59.9.705

    Article  CAS  PubMed  Google Scholar 

  15. Allen JB, Davidson MG, Nasisse MP, Fleisher LN, McGahan MC (1998) The lens influences aqueous humor levels of transforming growth factor-beta 2. Graefes Arch Clin Exp Ophthalmol 236:305–311. doi:10.1007/s004170050083

    Article  CAS  PubMed  Google Scholar 

  16. Saika S, Miyamoto T, Kawashima Y, Okada Y, Yamanaka O, Ohnishi Y, Ooshima A (2000) Immunolocalization of tgf-beta1, -beta2, and -beta3, and tgf-beta receptors in human lens capsules with lens implants. Graefes Arch Clin Exp Ophthalmol 238:283–293. doi:10.1007/s004170050354

    Article  CAS  PubMed  Google Scholar 

  17. Massague J, Chen YG (2000) Controlling tgf-beta signaling. Genes Dev 14:627–644

    CAS  PubMed  Google Scholar 

  18. Attisano L, Wrana JL (2002) Signal transduction by the tgf-beta superfamily. Science 296:1646–1647. doi:10.1126/science.1071809

    Article  CAS  PubMed  Google Scholar 

  19. Ibaraki N, Chen SC, Lin LR, Okamoto H, Pipas JM, Reddy VN (1998) Human lens epithelial cell line. Exp Eye Res 67:577–585. doi:10.1006/exer.1998.0551

    Article  CAS  PubMed  Google Scholar 

  20. Doi H, Shibata MA, Kiyokane K, Otsuki Y (2003) Downregulation of tgfbeta isoforms and their receptors contributes to keratinocyte hyperproliferation in psoriasis vulgaris. J Dermatol Sci 33:7–16. doi:10.1016/S0923-1811(03)00107-5

    Article  CAS  PubMed  Google Scholar 

  21. Saed GM, Diamond MP (2003) Effect of glucose on the expression of type I collagen and transforming growth factor-beta1 in cultured human peritoneal fibroblasts. Fertil Steril 79:158–163. doi:10.1016/S0015-0282(02)04556-9

    Article  PubMed  Google Scholar 

  22. Kurosaka D, Nagamoto T (1994) Inhibitory effect of tgf-beta 2 in human aqueous humor on bovine lens epithelial cell proliferation. Invest Ophthalmol Vis Sci 35:3408–3412

    CAS  PubMed  Google Scholar 

  23. Yao K, Tan J, Gu WZ, Ye PP, Wang KJ (2007) Reactive oxygen species mediates the apoptosis induced by transforming growth factor beta(2) in human lens epithelial cells. Biochem Biophys Res Commun 354:278–283. doi:10.1016/j.bbrc.2006.12.198

    Article  CAS  PubMed  Google Scholar 

  24. Marcantonio JM, Reddan JR (2004) Tgfbeta2 influences alpha5-beta1 integrin distribution in human lens cells. Exp Eye Res 79:437–442. doi:10.1016/j.exer.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn MA, Payne WG, Kierney PC, Pu LL, Smith PD, Siegler K, Ko F, Wang X, Robson MC (2001) Cytokine manipulation of explanted Dupuytren’s affected human palmar fascia. Int J Surg Investig 2:443–456

    CAS  PubMed  Google Scholar 

  26. Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) Tgfbeta2 and tgfbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208:530–545. doi:10.1006/dbio.1999.9211

    Article  CAS  PubMed  Google Scholar 

  27. Hayasaka K, Oikawa S, Hashizume E, Kotake H, Midorikawa H, Sekikawa A, Hoshi K, Hara S, Ishigaki Y, Toyota T (1998) Anti-angiogenic effect of tgfbeta in aqueous humor. Life Sci 63:1089–1096. doi:10.1016/S0024-3205(98)00205-7

    Article  CAS  PubMed  Google Scholar 

  28. Cacace AM, Ueffing M, Han EK, Marme D, Weinstein IB (1998) Overexpression of pkcepsilon in r6 fibroblasts causes increased production of active tgfbeta. J Cell Physiol 175:314–322. doi:10.1002/(SICI)1097-4652(199806)175:3<314::AID-JCP9>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  29. Saika S, Okada Y, Miyamoto T, Ohnishi Y, Ooshima A, McAvoy JW (2001) Smad translocation and growth suppression in lens epithelial cells by endogenous tgfbeta2 during wound repair. Exp Eye Res 72:679–686. doi:10.1006/exer.2001.1002

    Article  CAS  PubMed  Google Scholar 

  30. Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A, McAvoy JW (2002) Tgfbeta-Smad signalling in postoperative human lens epithelial cells. Br J Ophthalmol 86:1428–1433. doi:10.1136/bjo.86.12.1428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Grant-aided by National Key Technologies R & D Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongZhen Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Li, X., Hu, J. et al. Hydrogen peroxide-induced cellular apoptosis is mediated by TGF-β2 signaling pathway in cultured human lens epithelial cells. Int Ophthalmol 30, 229–237 (2010). https://doi.org/10.1007/s10792-009-9309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-009-9309-8

Keywords

Navigation